
Real-World Reinforcement Learning via
Multi-Fidelity Simulators

Mark Cutler, Thomas J. Walsh, Jonathan P. How, Senior Member, IEEE

Abstract—Reinforcement learning (RL) can be a tool for
designing policies and controllers for robotic systems. However,
the cost of real-world samples remains prohibitive as many RL
algorithms require a large number of samples before learning
useful policies. Simulators are one way to decrease the number
of required real-world samples, but imperfect models make
deciding when and how to trust samples from a simulator
difficult. We present a framework for efficient RL in a scenario
where multiple simulators of a target task are available, each
with varying levels of fidelity. The framework is designed to
limit the number of samples used in each successively higher-
fidelity/cost simulator by allowing a learning agent to choose
to run trajectories at the lowest level simulator that will still
provide it with useful information. Theoretical proofs of the
framework’s sample complexity are given and empirical results
are demonstrated on a remote controlled car with multiple
simulators. The approach enables RL algorithms to find near-
optimal policies in a physical robot domain with fewer expensive
real-world samples than previous transfer approaches or learning
without simulators.

Index Terms—Learning and Adaptive Systems, Reinforcement
Learning, Autonomous Agents, Animation and Simulation

I. INTRODUCTION

DESIGNING controllers and decision-making policies for
autonomous agents such as robots is often difficult and

tedious. Rather than designing custom controllers for each
agent in every new situation, reinforcement learning (RL) [1]
can be used to allow robots to autonomously discover novel
policies in new situations. Unfortunately, as noted in Ref. [2],
naı̈ve application of RL algorithms to robotic domains often
yields poor performance. The typical “curse of dimensionality”
encountered in RL problems becomes especially difficult when
the needed samples come from the real world, as robots
are expensive, run in real-time, often require direct human
supervision, and are subject to hardware degradation.

One tactic for decreasing the number of real-world samples
needed in robotic RL is for the learning agent to generate
samples through querying a simulation of the robot. Simulated
samples are typically much less costly (financially and tem-
porally) to obtain than samples from a real robot. In addition,
there are often multiple simulations of a particular robot avail-
able, or multiple methods for implementing simulators, each
with a different cost for generating samples associated with
it. For instance, a car can be modeled using simple equations

Mark Cutler and Jonathan How are with the Laboratory of Information and
Decision Systems, Massachusetts Institute of Technology, 77 Massachusetts
Ave., Cambridge, MA, USA. {cutlerm,jhow}@mit.edu

Thomas Walsh is with Kronos Inc., 297 Billerica Rd., Chelmsford, MA.
All work was done while he was with the Laboratory of Information and
Decision Systems, Massachusetts Institute of Technology, 77 Massachusetts
Ave., Cambridge, MA, USA. thomasjwalsh@gmail.com

Low-Fidelity
and/or Cost

Σ1

Σ2

High-Fidelity
and/or Cost
(real-world)

ΣD

Exploration heuristics

Learned (certain) model parameters

ρ1

β1

ρ2

β2

Fig. 1: The MFRL architecture: a multi-fidelity chain of simu-
lators and learning agents. Agents send exploration heuristics
to higher-fidelity agents and learned model parameters to
lower-fidelity agents. The environments are related by state
mappings ρi and optimism bounds βi. Control switches be-
tween learning agents, going to high-fidelity levels when an
optimal policy is found, and to lower-fidelity levels when
unexplored regions are encountered.

of motion or it can be modeled by complex simulations that
account for aerodynamic drag, suspension, tire shear, etc. The
more complex model will usually take more time to evaluate
(is more costly), but remains less expensive than running the
real car.

Unfortunately, even very complex and costly simulations
of robots rarely (if ever) perfectly model the real world,
and transferring policies learned in an imperfect simulation
directly to a robot can yield poor performance [3]. However,
simulations typically capture some aspects of an environment
accurately and can provide valuable information to augment
real-world data [4], [5].

In this paper we consider the problem of efficient real-
world RL when multiple simulations are available, each with
varying degrees of fidelity to the real world. Lower-fidelity
simulators are assumed to be less expensive (typically less
time to evaluate), but also less accurate with respect to the
actual robot. Lower-fidelity simulators are also assumed to be
optimistic with respect to the real world. While this assumption
may not be valid in all domains, it is consistent with our
observations of many simulators.

We introduce, analyze, and empirically demonstrate a new
framework, Multi-Fidelity Reinforcement Learning (MFRL),
for performing RL with a heterogeneous set of simulators
(including the real world). MFRL, depicted in Fig. 1, not only
chooses actions for an agent to execute, but also chooses which
simulator to perform them in. The framework combines ideas
from multi-fidelity optimization [6] and advances in model-

based RL that have yielded efficient solutions to the explo-
ration/exploitation dilemma. More specifically, heuristics from
lower-fidelity simulators and adjustments from high-fidelity
data (common techniques in multi-fidelity optimization) are
instantiated in MFRL using the successful “optimism in the
face of uncertainty” heuristic and the “Knows What It Knows”
(KWIK) model-learning framework from RL [7]. The result
is an agent that both

• uses information from lower-fidelity simulators to per-
form limited exploration in its current simulator, and

• updates the learned models of lower-fidelity agents with
higher-fidelity data.

Unlike unidirectional methods that transfer heuristics only
once to the real-world agent [8], the MFRL framework speci-
fies rules for when the agent should move to a higher-fidelity
simulator, as well as moving to a lower-fidelity level before
over-exploring in a more expensive simulation. We show
that these rules and the transfer of values and data provide
theoretical guarantees on convergence and sample efficiency.
Specifically, the framework (1) does not run actions at high-
fidelity levels that have been proven to be suboptimal at lower-
fidelity levels, (2) minimizes (under certain conditions) the
number of samples used in the real world and (3) polynomially
limits the total number of samples used in all simulators. In
addition, in the worst case, MFRL provably uses no more real-
world samples than unidirectional transfer approaches.

The MFRL algorithm implements single-environment,
model-based learners from the KWIK-Rmax family of algo-
rithms at each level of simulation. Theoretical results in this
paper are tied to the general KWIK framework and so apply
not only to tabular models of environments, but also to a
large class of representations such as linear and Gaussian-noise
dynamics covered by the KWIK learning framework [7]. We
illustrate this theoretical link by using a Dynamic Bayesian
Network (DBN) representation [9] for model learning in two
separate domains.

Our main contributions are (1) introducing the MFRL
framework for learning with multiple simulators, which is the
first framework that dynamically chooses which simulator to
perform actions in, (2) a theoretical analysis of the frame-
work’s sample complexity, and (3) several demonstrations of
efficient learning on a remote-controlled (RC) car with fewer
real-world data points than unidirectional transfer or learning
without simulators. These results demonstrate MFRL is a
provably and practically efficient manager of the low and high
quality simulators often available for robotics tasks.

MFRL is most applicable in situations where simulators are
already available or where the cost of coding the simulator is
outweighed by the increased learning speed. In our experi-
ence, most robotics domains construct simulators for reasons
other than learning, such as during the initial hardware and
software develop phases, and so simulators are often readily
available [10], [11].

This paper builds upon our initial results in Ref. [12]. Here
we provide new theoretical and experimental results demon-
strating the MFRL algorithm using non-tabular representations
of the reward and transition dynamics. We also investigate the

use of generative simulators, show the sensitivity of MFRL to
changes in parameter choices, and give more rigorous proofs.

II. RELATED WORK

In RL, simulators are often used to train learning agents,
with real world experience used later to update the simulator
or the agent’s policy, e.g. [4]. However, such systems do not
guarantee an efficient collection of samples from different
models, require practitioners to decide when to run policies
in the simulator or real world, and do not guarantee efficient
exploration. Another approach is to always execute actions in
the real world but use a low-fidelity simulator to help compute
policy search gradients [4], [5]. However, these approaches are
specific to policy search algorithms and, again, do not provide
exploration guarantees.

Significant recent advances in RL for robotics have also
come from model-based policy search methods [13]. Real-
world data are used to construct a model of the world,
from which trajectory rollouts can be used to update policy
parameters [14]. Methods such as trajectory optimization for
exploration [15] and skill generalization [16] have shown
impressive results in simulated and real robot domains, albeit
often without convergence or sample complexity guarantees.
By contrast, MFRL uses data not just from a target domain
but also from available simulators to build multiple models.
Furthermore, to make provably efficient use of data, MFRL
uses KWIK-Rmax-style learning and planning rather than
policy search techniques.

Multi-fidelity models have been considered for a single
agent that learns different policies for varying observability
conditions [17]. MFRL uses similar multi-fidelity models but
controls the current level of fidelity to find a single policy
for an observable real world task. Multi-fidelity models have
been used in the multi-agent context to combine data from
tasks performed in different simulators [18], but these policies
were learned from traces through supervised learning, not RL.

In transfer learning (TL), values or model parameters are
typically used to bootstrap learning in the next task, e.g. [19].
By contrast, MFRL uses values from lower-fidelity models
as heuristics guiding exploration, and the agent, rather than
nature, controls which simulator it is using, including the
capability to return to a lower-fidelity simulator. MFRL also
differs from TL between environments with different action
sets [20] in that the simulators can have different dynamics
or rewards, rather than just different available actions. Finally,
recent work in TL has considered sample complexity bounds
in a series of environments under both bandit [21] and full
MDP conditions [22]. However, both of these works assume
environments are chosen i.i.d., not by the agent itself. By
contrast, we provide sample complexity results for MFRL,
which actively chooses which environment to sample next.

The field of evolutionary robotics commonly uses a combi-
nation of simulated and real data to learn new controllers [23].
Genetic algorithms are used to evaluate candidate controllers,
with most of the evaluations occurring in simulation. Several
papers have investigated the “reality gap” that occurs when
controllers that work well in simulated environments perform

poorly on the physical hardware, and develop robust ways of
making simulators that can be used in conjunction with the
physical hardware [24]–[26]. While the ideas are similar to
the current work, we are focused on the RL problem where
we can guarantee efficient exploration.

Similar to MFRL, Transferred Delayed Q-Learning
(TDQL) [8] transfers the value function from a source learning
task as a heuristic initialization for the target learning task. Be-
cause TDQL uses Delayed Q-learning [27] as its base learner,
it can only be used with tabular representations, whereas our
use of the KWIK framework covers a number of more general
structured representations that are explored in Section VI.
However, the larger difference between TDQL and MFRL is
that MFRL also sends learned model parameters from higher-
fidelity simulators back, returning to lower-fidelity simulators
when useful information might be gained. We demonstrate
experimentally and prove theoretically that, in the worst case,
MFRL uses no more samples at the highest-fidelity level than
unidirectional transfer approaches like TDQL.

Finally, MFRL extends techniques in multi-fidelity opti-
mization (MFO) [6] to sequential decision making problems.
In MFO, an optimization problem is solved using multiple
models. Techniques in MFO include learning model dis-
parities [28] and constraining search based on results from
lower-fidelity models [29]. However, MFO does not consider
sequential decision making tasks. MFRL borrows lessons
from MFO by updating models with higher-fidelity data and
performing constrained exploration based on lower-fidelity
results, bringing the core intuitions of MFO to sequential
decision making problems.

III. BACKGROUND AND ASSUMPTIONS

A. Reinforcement Learning

We assume that each simulator can be represented by a
Markov Decision Process (MDP) [30], M = 〈S,A,R, T, γ〉
with states S and actions A. The bounded reward function is
defined as R(s, a) 7→ [Rmin, Rmax] where Rmin and Rmax

are real numbers. The transition function T encodes the
probability of reaching some next state given the current state
and action. Specifically, T (s, a, s′) = Pr(s′|s, a).

The optimal value function is specified as

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′)V ∗(s′)

where V ∗(s) = maxaQ
∗(s, a). Intuitively, Q∗(s, a) is the

expected sum of discounted rewards when taking action a in s
and then acting optimally thereafter. A deterministic policy π :
S 7→ A is said to be optimal when π∗(s) = argmaxaQ(s, a).
Given an MDP (including T and R), planning methods such
as value iteration [30] can be used to calculate the optimal
value function and optimal policy.

In RL, an agent knows S, A, and γ but not T and R, which
it learns from interaction with the environment. Many classes
of algorithms exist for learning in this setting including clas-
sical algorithms such as Q-learning [31], which do not build
explicit representations of T and R. In this work, however,
we concentrate on model-based RL solutions, like classical

Rmax [32] that explicitly build estimates T̂ and R̂ from data
and then use a planner, such as value iteration, to determine
the optimal policy. We make this choice for two reasons.
First, model-based learners are generally more sample efficient
than model-free approaches. Second, and more importantly for
MFRL, using a model-based approach allows us to potentially
transfer parameters learned in one simulator to another, a trait
we make use of when visiting a lower-fidelity simulator after
collecting data in a higher-fidelity environment.

B. Sample Complexity and the KWIK Framework

To judge the exploration efficiency of our algorithm, we
follow previous definitions [27] of sample complexity for an
RL agent. Sample complexity analysis is used to bound the
worst-case number of experiences needed by an agent to reach
near-optimal behavior with high probability. Specifically, we
use the following definition.

Definition 1. The sample complexity of a reinforcement
learning algorithm A that selects action at at state st on each
timestep t is, with probability 1− δ, the maximum number of
timesteps where V At(st) < V ∗(st)− ε.

The KWIK framework [7] standardizes sample complexity
analysis for model-based RL agents by measuring the number
of times the learners of T and R are uncertain in making
a prediction. Because samples for T and R have labels (the
noisy sampled transition and the reward signal itself), these
learners can be analyzed in the supervised learning setting. The
KWIK framework defines sample complexity for supervised
learners that initially only know the intended hypothesis class
H : X 7→ Y and accuracy/confidence parameters ε and δ.
Learning then follows the following protocol:

1) At each timestep t, the learner is given an input xt ∈ X ,
potentially chosen adversarially. No distributional as-
sumptions are made on the choice or order of inputs.

2) If the agent is certain of its prediction (||ŷt − yt|| < ε
with high probability), it predicts ŷt.

3) Otherwise, it must state “I don’t know” (denoted ⊥) and
will view a noisy output zt, where E[zt] = yt.

The framework forbids (with high probability) the agent from
making an inaccurate prediction of yt. It must explicitly admit
areas of the input space where it does not yet have enough
data to make accurate predictions of T and/or R. A state
becomes known once it has been observed sufficiently many
times for the learner to be ε-confident of the outcomes. The
KWIK sample complexity for such a supervised learner is just
the number of times, with probability 1−δ, where it predicts⊥.
A hypothesis class H is said to be KWIK learnable if an agent
can guarantee, with probability 1− δ, it will only predict ⊥ a
polynomial (in 1

ε , 1
δ , |H|) number of times.

The KWIK learnability of T and R can be used to in-
duce a polynomially sample efficient RL algorithm, through
the KWIK-Rmax RL framework [7]. KWIK-Rmax maintains
KWIK learners LT and LR with appropriate accuracy param-
eters and queries these learners to create an approximate MDP
with transition and reward functions T̂ and R̂.

Because of its reliance on KWIK learners, the algorithm is
explicitly aware of which areas of the state space are “known”
(where LR and LT can make accurate predictions) or “un-
known” (LT or LR predict ⊥). In the unknown areas, ⊥ pre-
dictions from the learners are replaced using the “optimism in
the face of uncertainty” heuristic when constructing T̂ and R̂.
Specifically, when LR predicts ⊥ for 〈s, a〉, R̂(s, a) = Rmax.
When LT predicts ⊥, a special transition to a state with a value
of Vmax = Rmax

1−γ is inserted. This interpretation encourages
exploration of unknown areas but not at the expense of already
uncovered dominant policies. It has been shown that proving
T and R are KWIK learnable and using them in the KWIK-
Rmax framework guarantees polynomial sample complexity
of the resulting RL agent [7].

In MFRL, the KWIK-Rmax framework is used at each level
of simulation. Unknown and known areas at each level are
cataloged by KWIK learners as specified above. However,
the uninformed Rmax heuristic is instead replaced by value
functions from lower level simulators, filling in areas where
learners at the current level predict ⊥. We also show how
to share learned parameters of T̂ and R̂ from higher-fidelity
levels to increase the accuracy of lower-fidelity simulations.

C. Simulator Assumptions and Objectives

In this work, we define a simulator Σ as any environment
that can be modeled as an MDP. We follow [7] by defining the
complexity of such domains, |Σ|, as the number of parameters
of their corresponding T and R representations, which may be
far smaller than the number of parameters need to represent S.
Also, since S may differ between Σi and a higher-fidelity Σj
(some variables may be absent in Σi), we follow prior work in
TL [19] and assume a transfer mapping ρi : Si 7→ Sj exists.
Specifically, we assume that Si ⊆ Sj , that is, that the states
available in lower simulators are a subset of those available at
a higher level, and that ρi maps states in Si to states in Sj ,
setting data uniformly across variables that exist in Sj , but
not in Si. For instance, in the RC car simulations, the lowest-
fidelity simulator (Σ1) does not model rotational rate ψ̇, so
states in S1 map to all states in S2 with the same variable
values except for ψ̇. The reverse mapping ρ−1

i only applies to
states in Sj with a single default value of the missing variable
(ψ̇ = 0 for the car). We further assume that that the set of
available actions is the same in all simulators.

We define fidelity based on how much Σi overvalues the
state/actions of Σj . Specifically, the fidelity f of Σi to Σj ,
with associated mapping ρi and tolerance βi, is

f(Σi,Σj , ρi, βi) =
−maxs,a |Q∗Σi

(s, a)−Q∗Σj
(ρi(s), a)|,

if ∀s, a, [Q∗Σj
(s, a)−Q∗Σi

(ρi(s), a) ≤ βi]
−∞, otherwise

where s ∈ Si. Intuitively, the fidelity of Σi to Σj is inversely
proportional to the maximum error in the optimal value
function, given that Σi never undervalues a state/action pair by
more than βi. Otherwise, Σi is considered to have no fidelity
to Σj . While there are many other possible definitions of

fidelity (for instance based on T and R), this definition fits
natural chains of simulators and facilitates efficient learning
through the MFRL architecture. We note that this definition is
not a distance metric (for instance, it is not symmetric), but
rather describes the relationship between simulators based on
optimistic differences in their value functions.

While it may seem restrictive, this relationship is fairly
common in real-life simulators. For instance, in our car sim-
ulators, the lowest-fidelity simulator assumes that actions will
have perfect outcomes, so aggressive maneuvers achieve their
desired results. In higher-fidelity simulators, and eventually
the real world, these optimistic values are replaced with
more realistic outcomes/values. Hence, the simulators form
an optimistic chain, formally defined as follows:

Definition 2. An optimistic multi-fidelity simulator chain is a
series of D simulators ordered Σ1, . . . ,ΣD, with ΣD being the
target task (real-world model) and f(Σi,Σi+1, ρi, βi) 6= −∞
for specified ρi and βi.

Intuitively, each simulator overvalues the optimal value
function of the next higher simulator, with β compensating
for any undervalues.

We also make the following assumptions about the cost and
accessibility of the simulators.

Assumption 1. A single step from simulator Σi has a larger
(but polynomially bounded in |Σi−1|) cost than a sample from
simulator Σi−1.

Assumption 2. Access to each simulator may be limited to
running contiguous trajectories rather than having random
access to a generative model or the model parameters.

The first assumption states that each successively higher-
fidelity simulator costs more to run per step than the one
below it, but it is potentially not worth sampling every 〈s, a〉
at the lower level. The polynomial relationship enforces the
fact that we still want to limit samples at the lower level.
The second restriction states that we may not have access to
the simulator parameters or the ability to sample state/action
outcomes generatively. This is the case in the real world and
in certain simulators (e.g. most commercial video games).
In Section VII we provide an algorithm for MFRL without
Assumption 2 restricting generative access to the simulators,
but first the algorithm is presented and efficiency results are
shown in the more restricted trajectory-only case.

Given such simulators, our objectives are the following:
1) Minimize the number of suboptimal learning samples

(with respect to Q∗) taken in ΣD.
2) Ensure that, for any run of the agent with simulator

Σi, only a polynomial number of steps (in |Σi|) are
taken before near-optimal behavior (given constraints
from higher-fidelity simulators) is achieved or control
is passed to a lower-fidelity simulator.

3) Guarantee that there are only a polynomial (in |Σ1,...,D|
and D) number of switches between simulators.

Objective 1 skews the sampling burden to lower-fidelity
simulators while objective 2 limits the sample complexity of
the algorithm as a whole. Objective 3 is included to prevent

excessive switching between the real-world robot and a simu-
lator, as there may be significant start-up costs associated with
the robot. This is particularly pertinent with dynamic robots
that can not pause their actions to wait for a learning agent to
update a model or policy based on simulated outcomes.

IV. MULTI-FIDELITY BANDIT OPTIMIZATION

One of the simplest RL settings where exploration is studied
is the k-armed bandit case, an episodic MDP with a single
state, k actions (called arms), and γ = 0. A learner must
choose actions to explore the rewards, eventually settling on
the best arm, which it then exploits. We now present a Multi-
Fidelity RL algorithm for the bandit setting, which has several
features of the full MFRL algorithm presented later.

A. A MF-Reward Learning Algorithm

Consider a chain of bandit simulators: at each level d ∈
{1, . . . , D} there are |A| actions with expected rewards
Rd(a) ≤ Rd−1(a) +βd. For a single simulator, we can utilize
a base learner that can update the estimates of each arm’s
reward. Here, we use KWIK reward learners LR,d,a with
parameter m based on the required accuracy parameters for
a single-arm learner: ε̄ and δ̄. These quantities are related to
the overall accuracy parameters in the learning scenario and
are defined later in Theorem 1. Specifically, a KWIK learner
for a single bandit arm a at a single level d can be created by
keeping track of the number of times cd,a that arm has been
pulled. The algorithm then predicts{

R̂d(a) if cd,a ≥ m = 1
2ε̄2 log(2

δ̄
)

⊥ otherwise
(1)

where the value of m is set based on Hoeffding’s inequal-
ity [33], assuming that the rewards are bounded on [0, 1].1

When ⊥ is predicted, a loose upper bound for the possible
payout of the action is Rmax, which will be used in our
algorithm below.

Algorithm 1 presents the Multi-Fidelity Bandit Framework
(MF-Bandit) for accomplishing objectives 1-3 using a KWIK
learner that keeps track of empirical reward means R̂d(a),
number of pulls cd,a, and upper bounds on the rewards Ûd,a
at fidelity level d. MF-Bandit also tracks the informed upper
bound Ud,a, which is the minimum of Ûd,a and the heuristic
from the lower level: Ud−1,a + βd−1 (lines 20 and 25). The
algorithm also keeps track of whether the value of each action
has converged (cond,a), whether an optimal action has been
identified (closedd), and if the learned model has changed
(changed) at simulator level d.

Starting in Σ1, the algorithm selects an action a∗ greedily
based on Ud and checks if learning at the current level is
complete (line 7). Before executing the action, it checks to
make sure the action has been tried sufficiently many times
at the simulator below (line 8). If not, control is returned to
level d − 1 where actions are selected using values from d
that are converged (lines 11-15). Otherwise, if learning at d

1We make this assumption for notational convenience. An extra term is
added if the range is larger than 1.

Algorithm 1 Multi-Fidelity Bandit Framework

1: Input: A bandit simulator chain 〈Σ, β〉, Actions A, Rmax,
Accuracy requirements ε and δ

2: Initialize: cond,a, changed := false,∀a, d
3: Initialize: KWIK learners LR,d(a, ε̄, δ̄)
4: Initialize: d := 1, Ûd,a, U1,a := Rmax∀a
5: for each timestep do
6: Select a∗ := argmaxa Ud,a
7: closedd := cond,a∗ ∨ a∗ is definitely near optimal
8: if d > 1 ∧ ¬cond−1,a∗ ∧ changed then
9: // Return to level d− 1

10: changed−1 := false
11: for a ∈ A do
12: if cond,a then
13: // Updated learner using R̂d and Ûd
14: Set LR,d−1,a based on LR,d,a
15: cond−1,a, changed−1 := true

16: d := d− 1
17: else if ¬closedd then
18: Execute a∗ in Σd, Observe r.
19: Update LR,d,a∗ // Update R̂d(a∗), Ûd,a∗
20: Ud,a∗ := min(Ud,a∗ , Ûd,a∗)
21: if LR,d,a∗ switched from ⊥ to “known” then
22: cond,a∗ , changed := true
23: else if d < D ∧ closedd then
24: // Chosen action already converged, go up
25: Where ¬cond+1,a: Ud+1,a := Ud,a + βd
26: changed+1 := false, d := d+ 1

is not finished, the action is taken and LR and Û are updated
(lines 17-22). Once the optimal action has been identified, the
algorithm moves up to level d+ 1 (lines 23-26).

Algorithm 1 differs from unidirectional heuristic transfer [8]
because it can backtrack to a lower-fidelity simulator when
a previously identified optimal action performs poorly. In
unidirectional transfer, information is only transferred from
lower- to higher-fidelity levels, with no option for the learning
agent to return to lower-fidelity levels to continue exploration.
Effectively, backtracking asks the lower-fidelity learner to find
a new optimal policy given additional knowledge from higher-
fidelity simulators.

B. Bandit Examples

We now present examples to showcase various features
of Algorithm 1. First, we show that MF-Bandit can find an
optimal policy for ΣD with far fewer samples in ΣD than
an algorithm without multiple simulators. Consider a bandit
problem with |A| = 5 arms and D = 3 simulators with
bounded reward [0, 1]. The rewards for each of the 5 actions
in each simulator are

Σ1 = {0.8, 0.8, 0.8, 0.8, 0.1}
Σ2 = {0.8, 0.8, 0.6, 0.6, 0.1}
Σ3 = {0.8, 0.6, 0.6, 0.6, 0.1},

all with uniform random noise up to 0.1. Table I(a) shows
the results of running Algorithm 1 in this scenario with our
KWIK bandit learner with m = 20. Results with only 〈Σ2,Σ3〉
and only Σ3 are also shown. Using both simulators or just
Σ2 produces a significant reduction in samples from Σ3, and
having Σ1 helps limit the samples needed from Σ2.

TABLE I: Samples used from the simulators

(a) Same optimal action in all
levels

Sims Used Σ1 Σ2 Σ3

Σ1, Σ2, Σ3 100 80 40
Σ2, Σ3 − 100 40
Σ3 − − 100

(b) Optimal action in Σ3 is not
optimal in Σ2

Sims Used Σ1 Σ2 Σ3′

Σ1, Σ2, Σ3′ 100 80 60
UNI 100 60 80
Σ3′ − − 100

In the scenario above, the algorithm could potentially
avoid backtracking because one of the optimal actions al-
ways remained the same at each level. But, consider the
same scenario except with an alternate top level, Σ3′ =
{0.4, 0.4, 0.6, 0.6, 0.1}. Now, neither of the optimal actions
in Σ2 are optimal in Σ3′ . Table I(b) shows the results of
Algorithm 1 in this case along with a version that does
no transfer and a version that only performs unidirectional
transfer (UNI) [8]. We see here that, by allowing the algorithm
to return to lower-fidelity simulators once the previously
considered optimal action has been disproved at a higher level,
valuable exploration steps in ΣD are saved and the cost in
terms of samples from the highest level is minimized.

C. Theoretical Analysis
We now formalize the intuition gained from the examples

above in theoretical guarantees for the bandit case. Throughout
these theoretical results we assume, without loss of generality,
that the rewards of each arm are bounded on [0, 1]. We
also assume the base learner is the KWIK bandit learner as
described earlier that predicts ⊥ as the output of an action
where it does not have m samples and otherwise predicts the
empirical mean R̂(a). Multi-state versions of most of these
guarantees are presented in later sections.

We begin by focusing on objectives 2 and 3 from Sec-
tion III-C: limiting the number of suboptimal actions at
each level and the number of samples overall. The following
theorem provides these sample complexity results as well as
guidelines for setting ε̄ and δ̄ in (1).

Theorem 1. Algorithm 1 uses only a polynomial num-
ber of samples over all the levels, specifically using only
O(|A|D

2

ε2 log(|A|
2D
δ)) samples per run at level d and only

changing d a maximum of |A|D times.

A proof of Theorem 1, as well as the rest of the theorems
in the paper, is contained in the Appendix.

Now we turn our attention to objective 1 from Section III-C,
minimizing the number of samples used in ΣD. We begin this
investigation with the following lemma, which is similar to
Lemma 1 of [8], stating that no action is tried at a level beyond
which it is dominated by the value of a∗ in ΣD.

Lemma 1. In the bandit setting described above with actions
a ∈ A and levels 1, . . . , D, consider action a at level d. If a

Algorithm 2 MFRL (MF-KWIK-Rmax)

1: Input: A simulator chain 〈Σ, β, ρ〉, Rmax, Planner P ,
accuracy parameters 〈ε, δ, mknown〉

2: Initialize: changed := false,∀d
3: Initialize: 2D KWIK learners LR,d(ε̄, δ̄) and LT,d(ε̄, δ̄)
4: Initialize: Q̂0 := Rmax

1−γ , Q̂1(s, a) := PLAN(1)
5: Initialize: d := 1, mk := 0
6: for each timestep and state s do
7: Select a∗ := argmaxa Q̂d(s, a)
8: if d > 1 ∧ changed ∧ (LT,d−1(ρ−1

d−1(s), a∗) = ⊥ ∨
LR,d−1(ρ−1

d−1(s), a∗) = ⊥) then
9: // Return to level d− 1

10: Q̂d−1 := PLAN(d− 1)
11: mk := 0, d := d− 1
12: else
13: Execute a∗ in Σd, Observe r, s′.
14: if LR,d(s, a∗) = ⊥ ∨ LT,d(s, a∗) = ⊥ then
15: mk := 0
16: Update LR,d and/or LT,d that predict ⊥
17: else
18: mk := mk + 1

19: if LR,d(s, a∗) or LT,d(s, a∗) is now known then
20: Q̂d := PLAN(d), changed := true
21: if d < D ∧mk = mknown then
22: // Go up to level d+ 1
23: Q̂d+1(s, a) := PLAN(d+ 1)
24: mk := 0, changed := false, d := d+ 1

25: procedure PLAN(d)
26: // Call planner P using highest-fidelity data available
27: For any (s, a) let d∗(s, a) be largest d such that

LR,d∗(s, a) 6= ⊥ ∧ LT,d∗(s, a) 6= ⊥ ∧ d∗ ≥ d
28: if d∗ does not exist then
29: d∗ := d
30: Q̂d := P (〈Sd, A, LR,d∗ .R̂, LT,d∗ .T̂ , γ〉, Qd−1 +βd−1)
31: end procedure

has been executed m times at level d, let µd = R̂d(a). Other-
wise, set µd = Ud(a). If µd < RD(a∗D)−∑D−1

d̄=d βd̄−ε, where
a∗D is the optimal action in ΣD, then, with probability 1− δ,
a will not be attempted at or above level d.

Now we show that only actions that must be tested in ΣD
are used there (objective 1 from Section III-C).

Theorem 2. With probability 1−δ, any action a attempted in
simulator ΣD (the real world) by Algorithm 1 is either near
optimal (within ε of RD(a∗)) or could only be shown to be
suboptimal in ΣD.

Thus, Algorithm 1 never tries actions that can be pruned by
lower-fidelity simulators. A corollary of this theorem is that,
in the worst case, MF-Bandit uses no more samples in ΣD
than unidirectional transfer methods use.

V. MULTI-FIDELITY REINFORCEMENT LEARNING

We now instantiate the principles of generating heuristics
from lower-fidelity simulators and sending learned model

data down from higher-fidelity simulators in the multi-state,
cumulative discounted reward RL case.

A. The MFRL Algorithm

Algorithm 2 shows the MFRL framework, which takes
as input a simulator chain, the maximum reward Rmax, a
state-mapping between simulators ρ1, . . . , ρD−1, a planner P ,
and accuracy requirements ε, δ, and mknown. The algorithm
begins by initializing the variables d, mk and changed and
the base KWIK learners LT,d and LR,d, parametrized by
ε̄ and δ̄. These KWIK learners are proxies for the learned
transition and reward functions at level d, which we denote
LT,d.T̂ and LR,d.R̂, respectively. More specifically, whenever
a state/action pair is “known” (neither LR nor LT predict ⊥),
T̂ and R̂ model the predictions of the KWIK learners. If one of
the learners predicts ⊥, the Q-values from the previous level
will be inserted as a heuristic to encourage exploration. The
Q-values for the lowest-fidelity simulator are set optimistically
using Rmax

1−γ , and the agent begins choosing actions at that level.
The agent chooses actions for the current state greedily.

If, according to the KWIK model learners, the selected
state/action pair is not known at level d − 1, and a change
has been made at the current level, the algorithm backtracks
one layer of fidelity (lines 8-11). Otherwise, the action is
executed and LT and LR at the current level are updated.
Note that while backtracking after seeing a single state/action
pair that is not known at level d − 1 is theoretically correct,
in our experiments we typically wait until munknown such
“unknown” state/action pairs are encountered, which helps
control sampling at lower-fidelity simulators.

If the model parameters change, the changed flag is also
set and the planner recalculates the Q-values using the PLAN
subroutine (lines 25-31). Information from the highest-fidelity
level that does not predict ⊥ is used in the planner. If no such
level exists, then the planner uses the current heuristic value
(passed from a lower-fidelity level).

Finally, the convergence check (line 21) determines if
MFRL should move to a higher-fidelity simulator. In the multi-
state case, simply encountering a known state does not indicate
convergence, as states that are driving exploration may be
multiple steps away. Instead, Algorithm 2 checks if the last
mknown states encountered at the current level were known
according to the base learners. For theoretical purposes, we
can set mknown to the following quantity, which is the number
of steps needed to show that an MDP comprised only of
the “known” states sufficiently models the environment (see
Theorem 4 of [34]).

mknown =
1

1− γ ln

(
4 (Rmax −Rmin)

ε̄(1− γ)

)
(2)

This quantity guarantees that, if the true value function is
significantly different from the value of the current policy in
the “known” MDP, with high probability an unknown state
will be encountered during the run of mknown states. Further
details about the theoretical properties are given in Theorem 3
below. In practice, a smaller value is usually adequate to check
for convergence and move to a higher-fidelity simulator, but (2)
can be used to ensure theoretical correctness.

(a) No puddle or
noise (Σ1)

(b) Some puddle
and noise (Σ2)

(c) Full puddle and
noise (Σ3)

Fig. 2: Σ1, . . . ,Σ3 for the puddle world. Σ1 has no puddle.
Σ2 has most of the puddle, but the optimal policy in Σ1 can
bypass these puddle portions. Thus, the optimal policy in Σ1

is still optimal in Σ2, but not in Σ3.

TABLE II: Parameters used for the puddle world results.

Sim mLR
mLT

σ mknown munknown β
Σ1 1 3 0 75 − 0
Σ2 1 4 0.01 75 20 0
Σ3 1 5 0.02 75 20 −

B. Puddle World with MFRL

We illustrate the behavior of MFRL in a variant of the pud-
dle world domain [35] with multi-fidelity simulators, shown in
Fig. 2. A puddle world agent moves in one of four diagonal
directions with a step cost of −1 (0 at the goal) and high
negative rewards in the puddle. We implemented the puddle
world with diagonal actions and γ = 0.95, so the optimal
policy in Σ3 is generally to skirt along the outer edges
of the puddle, while the optimal policy in Σ2 is to move
diagonally between the puddles. The puddle world is 1 unit
square and each step moves 0.1 units plus some zero mean
Gaussian noise. For learning and policy evaluation, the world
is discretized in the two dimensions into a 10 by 10 grid array.

We tested MFRL in the presence of two lower-fidelity
simulators with respect to the “real” puddle world. The base
level Σ1 contains no puddle and has deterministic actions. The
middle level Σ2 contains some of the puddle and has noisy
actions. This creates a scenario where an optimal policy in the
low-fidelity simulator is poor in Σ3 but still contains significant
useful information, such as the puddle portions in Σ2 and the
goal location. The top level Σ3 contains the full puddle and
the full action noise.

Fig. 3 shows learning curves from this experiment with
Table II showing the parameters used during the experi-
ments. Here, mLT

and mLR
denote the number of times a

state/action pair must be observed before the transition and
reward functions, respectively, are known. MFRL is compared
with unidirectional transfer (UNI), no-transfer (RMAX) and
prioritized sweeping (PS) [1]. The mLT

and mLR
parameters

were the same in each of the three Rmax-based algorithms,
ensuring a consistent comparison. In PS, the agent explores
using an ε-greedy policy (ε = 0.1) and optimistic initialization
while evaluation occurs greedily.

MFRL performed the best, with some negative transfer at
the beginning from the “shortcut” in Σ2. As the learning
agent encounters the real puddle in Σ3, it starts exploring
areas of the state-action space that where not explored in
Σ2. This exploration results in several level changes where

0 500 1000 1500 2000 2500 3000
Full Puddle (Σ3) Samples

−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0
A

ve
ra

ge
C

um
ul

at
iv

e
R

ew
ar

d

MFRL (Σ1, Σ2, Σ3)
UNIL (Σ1, Σ2, Σ3)
RMAX (Σ3)
PS (Σ3)
MFRL (Σ1, Σ3)
MFRL (Σ2, Σ3)

Fig. 3: During learning, MFRL consistently outperforms uni-
directional transfer (UNI), no-transfer Rmax (RMAX), and
prioritized sweeping (PS) at Σ3. Note that these are only the
samples from Σ3. Each point is an average of 1000 learning
runs (standard errors shown). Greedy policies are evaluated 60
times, each capped at 600 steps.

No Puddle (Σ1)

Some Puddle (Σ2)

Full Puddle (Σ3)
0

500

1000

1500

2000

2500

3000

3500

S
im

ul
at

io
n

S
te

ps

MFRL
UNI
RMAX

(a) Average Samples

No Puddle (Σ1)

Some Puddle (Σ2)

Full Puddle (Σ3)
0

1000

2000

3000

4000

5000

6000

M
FR

L
S

te
ps

(b) Example MFRL algorithm
run

Fig. 4: (a) At the top level, MFRL requires fewer than half
the samples needed by both unidirectional transfer (UNI)
and no-transfer Rmax (RMAX). This is accomplished by
transferring some learning burden to the other simulators. Each
bar represents an average of 1000 learning runs with standard
deviations shown. (b) An example run of the MFRL algorithm.
After initially exploring the top level, the algorithm spends a
significant number of samples exploring the rest of the middle
level, thus decreasing the required samples at the top level.

the learning agent in Σ2 plans using information from Σ3,
causing that lower-fidelity agent to find a way around the
puddle. The result is a consistent and significant improvement
over unidirectional transfer throughout learning. Note that
backtracking from higher- to lower-fidelity levels occurs only
when there is still uncertainty at the lower-fidelity levels. If no
uncertainty exists at the lower-fidelity levels, then returning to
those levels will not yield better Q-values to guide exploration
at the higher-fidelity levels.

MFRL also outperforms naı̈ve model-based RL algorithms
such as PS despite PS performing better than Rmax alone.
Fig. 3 also shows that even in the presence of only one
simulator (MFRL (Σ1, Σ3) and MFRL (Σ2, Σ3)), MFRL still
outperforms standard Rmax.

If Σ2 and Σ3 were switched so that Σ2 is the “real” world,
the optimistic chain assumption would be violated. In this
case, the learning agent would explore all of the puddle in
Σ3, converging to a policy that moves around the puddle
towards the goal. When the agent transitioned to Σ2, it would
not explore and find the “shortcut” between the puddles, but
instead continue with the optimal policy from Σ3. Despite not
converging to the true optimum, a good policy in Σ2 would
be found with very few steps needed from that level.

The improvement of MFRL over unidirectional transfer is
accomplished while using more than 50% fewer samples in the
top level as seen in Fig. 4(a). In fact, unidirectional transfer
takes almost as long as the no-transfer case to consistently find
the optimal policy, primarily because even with unidirectional
transfer, the learning agent still needs to explore the majority
of the state/action space in Σ3 before finding the path around
the puddle. Fig. 4(b) shows a single run of MFRL with bars
showing samples in each of the 3 simulators. The MFRL agent
relied heavily on Σ1 initially and swapped back to Σ2 several
times while learning at Σ3, gathering crucial information
through this lower cost simulator.

C. Theoretical Analysis

We now formally quantify the behavior of Algorithm 2
by extending the theoretical results from the bandit case.
Throughout this section we make the standard assumption,
without loss of generality, that the rewards of the MDP are in
the range [0, Rmax]. We also set mknown by (2) and instantiate
the accuracy parameters of the KWIK MDP learners as

ε̄ =
ε

4(D + 1)
, δ̄ =

δ

4(D + 2D|Σ|) . (3)

where |Σ| is the maximum number of parameters used to
describe a simulator in the optimistic chain. Typically, |Σ|
is the number of parameters representing the transition and
reward functions in the real-world MDP. Furthermore, we
assume throughout this section that the variables in each Σi
are the same; that is, ρi is the identity mapping. We return
to this assumption at the end of the section and discuss how
βi may need to be increased to preserve the stated properties
when some simulators have missing variables.

It should be noted that, like all algorithms in the Rmax
family, the sample complexity bounds presented here are
meant to show the scalability of the algorithm with respect
to problem size, not for actually setting the known-ness
parameters in practice. That is, the analysis shows that as
problems grow larger (with respect to |S|, |A|, ε, or δ),
the number of samples needed increases only polynomially
in those terms. However, because of the loose bounds used,
practitioners almost always choose far lower values for known-
ness based on the noisiness and risk in their environments. It
is likely that setting known-ness parameters lower in this way

invalidates the theoretical worst-case sample complexity, but
in most problems these algorithms have proven remarkably
robust to these lower values. Recent theoretical results [36]
indicate that tighter bounds can be achieved, supporting these
more aggressive known-ness parameters.

We begin by analyzing the sample complexity of a run at
each level of simulation and the total number of level changes
in the MFRL algorithm. As with Theorem 1, this Theorem
covers objectives 2 and 3 from Section III-C.

Theorem 3. Algorithm 2 uses only a polynomial number of
samples in 〈|Σ|, 1

ε ,
1
δ ,

1
1−γ 〉 per run at level d and only changes

d a maximum of (D + 2D|Σ|) times.

While Theorem 3 covers the convergence and sample com-
plexity of MFRL, the worst case bounds in the theorem above
may require an agent to do the same amount of learning in ΣD
as an agent without any simulators. This is necessary because
in the worst case the simulators provide no useful information
to the real world. To understand the more general theoretical
benefits of MFRL and its relationship to the unidirectional
transfer method, we expand Lemma 1 and Theorem 2 to the
multi-state case, covering objective 1: limiting steps in ΣD.

The following extension of Lemma 1 shows that, for a given
state s, if an action’s Q-value is definitely dominated by the
optimal action at s, with high probability the action will not
be attempted at the current or higher-fidelity levels.

Lemma 2. Consider state s and action a at level d and let
µd = Q̂d(s, a) if T̂ (s, a) and R̂(s, a) are known. Otherwise,
µd = Qd−1(s, a). If µd < QD(s, a∗D) −∑D−1

d̄=d′ βd̄ − ε where
a∗D is the optimal action for s in ΣD, then, with probability
1− δ, a will not be attempted in s at or above level d.

Unlike the bandit case, the lemma above does not translate
directly into a guarantee on the necessity of an action in ΣD
because the KWIK-Rmax algorithm is not guaranteed to be the
most efficient exploration algorithm possible. It does, however,
guarantee that every suboptimal step is, with high probability,
leading towards a learning experience (see Lemma 13 of [7]
and Theorem 4 of [34]). Therefore, we can state the following
property of Algorithm 2 based on the lemma above and this
guarantee of a future learning experience.

Property 1. With probability 1− δ, any action a attempted in
state s of simulator ΣD (the real environment) by Algorithm 2
is either near optimal (within ε of V ∗D(s)) or will eventually
lead to an unknown state that is either not learned about in
levels below or that needs to be learned about in ΣD.

Thus, Property 1 means that MFRL tries actions in the real
world that either lead to needed exploration or backtracking
to a lower-fidelity level. Property 1 also means that MFRL
will, with high probability, enter no more unknown states
in ΣD than a unidirectional transfer method with the same
base learner and architecture. Both approaches will be drawn
to areas that fit the two cases above. However, by returning
to ΣD−1, MFRL can potentially learn about areas that were
not visited earlier in ΣD−1 and thereby prune actions as in
Lemma 2. By contrast, the unidirectional case can only learn
about such areas in ΣD. Because of the optimistic chain

assumption, obtaining data from the lower-fidelity simulator
can only strengthen the heuristic and prune more actions.
Therefore, in the case where MFRL returns to ΣD in the exact
state it was in before it decided to use the simulators, MFRL
will make no more (worst case) sub-optimal steps than the
unidirectional approach with the same base learners.

However, in cases where the agent “resets” to the start state
of ΣD upon returning from the lower-fidelity simulators, it is
possible for MFRL to make more suboptimal steps than the
unidirectional algorithm because it needs to retake potentially
suboptimal steps to reach the state it was in when it decided to
return to the lower-fidelity simulators. However, this increase
in suboptimal steps is at most a multiple of the polynomial
number of possible entries into the simulator (covered in
Theorem 3) and will usually be offset by better information
gained in the lower simulators.

D. Properties of MFRL with Missing Variables

We now return to the assumption, made in Section V-C, that
each Σi contains the same set of variables. In cases where a
variable v exists in Σi but is missing in Σi−1, one value of the
variable is designated as the default value and only parameters
learned in states with this value can be used by the planner in
Σi−1. For instance, in our RC car, if a simulator is missing
the “wheel slip” variable, only non-slip dynamics should be
used by the planner in that simulator. However, because ρi is
potentially one-to-many from Σi−1 to Σi, the Q-values passed
up to Σi could cause an undervaluation of some states in Σi.

Consider the wheel-slip example with states s0 and s1 in Σi
where s0 has no slip and s1 has slip. Suppose V ∗(s1) = 1 and
V ∗(s0) = 0; that is, the slipping state is more valuable. If the
agent experiences s0 first and then returns to Σi−1, s0 in Σi−1

may set V ∗ = 0, the value in the simulator above. Now, when
the agent returns to Σi, 0 will be used as the heuristic value
for s1. Unfortunately, this is an underestimate of the value
function in the slippery state, invalidating the KWIK-Rmax
assumptions.

However, MFRL has machinery to compensate for such
undervaluation. Specifically, βi−1 can be used to increase
the transferred heuristics in this case. All of the properties
described above hold in the case of missing variables as long
as βi−i is set high enough at each level to guarantee both
Definition 2 and that Q∗i (s1, a) + βi−1 > Q∗i−1(s0, a) where
s1 and s0 are states in Σi that were aliased in Σi−1.

In summary, missing variables in some of the simulators
add complications to the algorithm’s exploration strategy, but
they can be overcome by utilizing the existing βi parameters
already built into the framework. Future work will investigate
the effects of a non-unity ρi mapping in greater detail.

E. Sensitivity of MFRL Parameters

In this section we demonstrate how the input parameters
βi, mknown, and munknown affect the performance of Algo-
rithm 2. Fig. 5 shows the performance of the algorithm in the
puddle world domain as each of the three parameters is varied
from its nominal value. The nominal values used in the domain
are β = β1 = β2 = 0, mknown = 75, and munknown = 20.

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Optimality Tolerance, β

500

1000

1500

2000

2500

3000

3500

4000

S
am

pl
es

Default
Σ1

Σ2

Σ3

(a) Varying optimality tolerance

0

2000

4000

6000

8000

S
am

pl
es

Default Σ1

Σ2

Σ3

5 10 15 20 25 30 35 40
Switching Parameter, munknown

0

50

100

150

S
w

itc
he

s

Σ1 ↔ Σ2

Σ2 ↔ Σ3

(b) Varying switching parameter

0

1000

2000

3000

4000

S
am

pl
es Default Σ1

Σ2

Σ3

0

10

20

30

40

S
w

itc
he

s

Σ1 ↔ Σ2

Σ2 ↔ Σ3

20 40 60 80 100 120
MPD Convergence Tolerance, mknown

−3000

−2000

−1000

0

1000

R
ew

ar
d

(c) Varying convergence parameter

Fig. 5: The effects of varying the parameters of the MFRL algorithm as demonstrated in the puddle world domain. Bold lines
denote means and shaded areas show one standard deviation. Please refer to the text for details.

Each data point in the graphs is an average of 1000 runs, with
the shaded regions denoting one standard deviation.

In Fig. 5(a), the simulator tolerance β is increased signifi-
cantly from the true value of β = 0. The algorithm converges
to the optimal policy for all values of β; however, as the
tolerance is increased, the number of simulator steps at ΣD
increases since the algorithm is unable to prune as many
suboptimal state/action pairs. Eventually, Σ3 no longer gains
any information from the simulators below it and the number
of samples needed to converge at Σ3 quickly approaches
the number needed to converge at Σ1. However, even with
an inaccurate β value, the MFRL algorithm converges to
the correct policy using no more top-level samples than had
learning been performed at the top level alone.

Fig. 5(b) shows how the number of samples used at the top
level increases with increasing munknown. As with changing
β, the MFRL algorithm converged to the optimal policy for
all values of munknown. For the theoretically correct value of
munknown = 1 (see Section V-A), the number of samples used
at Σ3 is minimized, but at the expense of a high number of
simulator switches and a large number of samples used at the
other simulator levels. Setting munknown determines a trade-
off between minimizing the samples at Σ3 and minimizing the
number of simulator switches. For many robotic scenarios it
may be advantageous to set munknown > 1 if the start-up costs
of running the robot are significant. Also, setting munknown

low for a particular expensive simulator can help limit the
number of samples needed from that level.

Finally, Fig. 5(c) shows the algorithm performance as the
convergence parameter mknown is varied. Notice that setting
mknown too low causes the algorithm to converge prematurely
to a suboptimal policy, while setting the value too high wastes
unnecessary samples converging to the same policy.

Empirically, we see that the MFRL algorithm is robust
to variations in the tuning parameters of β, munknown, and
mknown. The algorithm converges to the optimal policy at
the top level for all values of the tried parameters, except
for when mknown is set artificially too low. While no firm
guidelines exist yet for determining these parameters for new
domains, in general, β should be set based on approximately
how optimistic two adjacent simulators are, mknown based on
how many successive “known” samples should be observed

before being confident that further exploration is not needed,
and munknown based on how costly it is to backtrack to a
lower-fidelity simulator.

VI. MORE GENERAL REPRESENTATIONS THROUGH THE
KWIK FRAMEWORK

Thus far, while our analysis of MFRL’s sample complexity
has been done through the general KWIK framework, we have
focused mostly on tabular representations of T and R. How-
ever, the KWIK framework allows model-based RL agents to
employ a number of more general representations that scale
polynomially efficient learning to larger environments.

The mechanism for performing such scaling is to use a
representation of T and R with far fewer parameters than |S|.
Many such representation classes have been analyzed within
the KWIK framework [7], including linear systems [37],
“typed” Gaussian-offset dynamics [38], Dynamic Bayesian
Networks (DBNs) [7], and Gaussian processes [39]. Complex
robotic motion may also benefit from stronger relational rep-
resentations such as Object Oriented MDPs [40]. Since our
theoretical analysis was done for any KWIK learnable rep-
resentation, the algorithm and efficiency guarantees hold for
these representations as well. When continuous representations
are used, Q is approximated with a function approximator. The
approximator parameters are passed from lower- to higher-
fidelity levels to construct optimistic values. Note that not all
systems are KWIK learnable [7] (e.g., the conjunction of n
terms).

In the following sections, we describe one of these general
representations, a DBN, in more depth and illustrate how it
can be used in the MFRL framework in the puddle world
simulators from Section V-B.

A. Dynamic Bayesian Networks
A Dynamic Bayesian Network [9], [41] represents the

evolution of a set of factors F from one step to another. A
DBN can be viewed as a graphical model containing 2|F |
nodes representing the value of each factor at time t and time
t + 1. Each factor f at level t + 1 is connected to a set of
parent nodes Π(f) at level t.2 The assumption leveraged in

2Cross-Edges within the t + 1 level are also allowed as long as they do
not create cyclic dependencies.

x y a

x′ y′

st

st+1

Fig. 6: A Dynamic Bayesian Network representation of the
transition dynamics for the puddle world domain introduced in
Section V-B. Each state consists of an x and a y grid location.
These dimensions are independent given the current action,
thus reducing the fully connected tabular representation to one
with 2 factors.

a DBN is that the probability distribution over f ’s value is
independent of the probability of any other factor value given
Π(f). Thus, the probability of f taking on a given value can be
encoded in a small probability table that grows exponentially
only in the number of parents. In this work we use tabular
representations of the conditional probability distributions, but
any non-tabular, KWIK compatible representation could also
be used.

DBNs can naturally be used to represent an MDP transition
function for a factored state space by representing the factors
of s and a in the top level and the factors of s′ in the bottom
level (with dependencies on the variables of s and a). Then,
based on the independence assumption of the DBN we have
T (s, a, s′) =

∏
f∈F Pr(f(s′)|Π(f |s, a)).

A DBN over n factors, each with v values, contains only
n(v − 1)v|Π| parameters, where |Π| is the maximum number
of parents of any node. Thus, the DBN is KWIK learnable
given the structure Π using the KWIK-Rmax framework.3

Specifically, a parameter m = 2v/ε2 ln(2v/δ) is set, and,
for a given 〈s, a〉, if any factor induces a Π(f |s, a) with
fewer than m experiences, LT (s, a) = ⊥, otherwise the
maximum likelihood distribution given the current data is used
for T . Combining this partitioning of known and unknown
factor combinations with the Rmax heuristic yields agents
that efficiently target factor combinations that are unknown
but may lead to better behavior, without exploring the entire
ground state space.

In MFRL, we use the generic Algorithm 2 with the base
KWIK-DBN learners described above, but instead of the Rmax

heuristic, we set Q̂i(s, a) for any s that induces an unknown
parent configuration (that is, LT (s, a) = ⊥) to Q̂i−1(s, a).

B. DBNs for the Puddle World

States in the puddle world domain described in Section V-B
consist of the x and y coordinates of the grid containing the
current location of the agent. When the agent takes a step, the
x coordinate of the new grid depends only on the previous
x grid coordinate, and not on the previous y grid coordinate.
Similarly, transitions between y grid values depend only on
the current y values. Therefore, the transition dynamics of
the puddle world agent can be captured by the DBN model
shown in Fig. 6, where the next x and y state values depend

3KWIK algorithms also exist for learning this structure. See [7].

0 500 1000 1500 2000 2500
Full Puddle (Σ3) Samples

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

A
ve

ra
ge

C
um

ul
at

iv
e

R
ew

ar
d

MFRL-TAB
MFRL-DBN
UNI-TAB
UNI-DBN

(a) Learning curves (standard er-
rors shown)

No Puddle (Σ1)

Some Puddle (Σ2)

Full Puddle (Σ3)
0

500

1000

1500

2000

2500

3000

3500

S
im

ul
at

io
n

S
te

ps

MFRL-TAB
MFRL-DBN
UNI-TAB
UNI-DBN

(b) Samples used (standard devi-
ation shown)

Fig. 7: Using the Dynamic Bayes Network (DBN) shown in
Fig. 6 to represent the transition function for the puddle world
decreases the top-level convergence time and overall samples
used. (a) However, the more generalized representation func-
tion also transfers more negative information than the tabular
representation (TAB) as seen by the initial dips in average
reward. (b) The total samples used across the three simulator
levels is decreased by an average of 52% and 66% for the
MFRL and unidirectional transfer (UNI) cases, respectively.

only on the previous action and previous x or y state value,
respectively. It should be noted that this DBN representation
is not the most efficient way to represent or solve the puddle
world domain, but is merely an example of how DBN’s can
be used to increase the speed of learning.

Fig. 7 shows average learning curves at the top level and
average samples at each of the three levels using Algorithm 2
with the DBN extensions described in Section VI-A. Im-
provement over the tabular transition function representation
is evident as more than 50% fewer samples are needed in the
three levels when using the DBN.

One unanticipated effect of using the more general repre-
sentation is the increased negative transfer from Σ1 and Σ2 to
Σ3, as demonstrated by the more substantial initial decrease
in average reward during learning shown in Fig. 7(a). The in-
creased negative transfer is due to the increased generalization
of the transition dynamics. When exploring Σ3, the agent is
less likely to initially reach states unobserved at Σ2 because
the DBN generalizes each experience to many more states
than a tabular representation would. Thus, the DBN agent
will explore more of the puddle in Σ3 before moving back
to Σ2 and Σ1. A detailed analysis of the effects of transition
and reward dynamics generalization on the amount of negative
transfer in MFRL is outside the scope of this paper and will
be saved for future work.

VII. GENERATIVE SIMULATORS

Thus far, we have conducted our analysis and experi-
ments under Assumption 2, which states samples can only
be obtained by executing trajectories. While this is certainly
true in the real world and may be true in many high-level
simulators with little API access (such as a commercial video

0 200 400 600 800 1000 1200
Full Puddle (Σ3) Samples

−700

−600

−500

−400

−300

−200

−100

0

A
ve

ra
ge

C
um

ul
at

iv
e

R
ew

ar
d

MFRL
MFRL-GEN
MFRL-DBN
MFRL-DBN-GEN

Fig. 8: Using generative access in the puddle world domain
doesn’t significantly improve learning performance. Other
simulation environments could benefit more from generative
access to the simulation environments. Learning curves are the
average of 1000 runs with standard errors shown.

ri,cmd

ri+1,cmd

i+1

i

i-1
ri,cmd

vi,cmd

ai=

vx

r
y

c

si =

r

Allowable Area

Fig. 9: The RC car task consists of driving around a fixed-
length track. Each lap is divided into four segments and the car
must choose both the commanded velocity and commanded
turn radius of each segment upon completion of the current
segment. These decisions are made based on the state values
at the end of each segment, namely the car forward velocity,
current radius, rotational velocity, and segment type.

game or complex simulator), often this assumption may be
too restrictive. Many simulators provide generative access to
dynamics and reward information, where arbitrary state/action
pairs can be queried.

We propose a simple extension to the MFRL algorithm
when one or more simulators provide generative access. When
moving to a lower-fidelity simulator based on a set S̄ of states
unknown at level d − 1, if Σd−1 is generative, the algorithm
runs greedy trajectories starting directly at the states in S̄ to
gather samples for its model of Σd−1. Once all of the states
in S̄ are known, it performs the normal greedy trajectories in
Σd−1 as specified in the original MFRL algorithm.

Fig. 8 shows the result of applying Algorithm 2 to the pud-
dle world domain described in Section V-B, where generative
access is assumed at all levels of the domain. Generative access
does little to improve the convergence of the algorithm in the
real puddle world or with the RC car in the next section.
However, we believe other domains might benefit more from
generative simulator access.

VIII. RC CAR RESULTS

A. Experimental Setup

The MFRL algorithms are experimentally verified using an
RC car driving on an indoor track. The car is an off-the-shelf

Velocity
Control

𝜔𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

On-Board

Measured position,
velocity, and heading

(wireless
link)

Motion
Capture

𝜔𝑐𝑚𝑑

Pure
Pursuit

𝑣𝑐𝑚𝑑 ,
𝑟𝑐𝑚𝑑 ,
𝜓𝑐𝑚𝑑

Low Level Control

MFRL

Actions

State

𝛿

PI Wheel Speed
Controller

Throttle

Fig. 10: One of the benefits of the MFRL framework is
the ability to wrap the learning around fixed lower-level
controllers. The car is controlled using a series of closed-
loop controllers that perform high-rate velocity and position
tracking, while MFRL learns which high-level commands to
issue at a much slower rate. The RC car and associated
variables are also shown. The linear velocities Vx and Vy are
in the body-frame. The steering angle is δ, the wheel velocity
is ω, and the heading rate is ψ̇.

rally car shown in Fig. 10. The position, velocity, and heading
angle of the vehicle are measured using an external motion
capture system. The wheel velocity is measured and filtered
using an optical encoder read by a microcontroller.

Fig. 9 shows the car task, which consists of selecting
different radii and velocities to minimize lap-times on a track
of fixed length. In this scenario, the track consists of straight
and curved segments, each with an associated distance and
velocity parameter, both of which remain constant during the
length of each segment. As shown in the diagram, the virtual
“cones” are fixed and denote the length of the path. As the
car finishes each segment, the commanded radius ri,cmd and
velocity vi,cmd values for the next segment are chosen. The
reward returned for each segment is −t where t is the elapsed
time required to drive that segment. If the car drives, or often
slips, out of a virtual “drivable” area around the track (denoted
by the large black box in Fig. 9), the car resets to a fixed
initial condition and is given a large negative reward. The state
variables in si (Fig. 9) are the body frame forward velocity
Vx, rotational rate ψ̇, distance from track center r, and the
current segment type c (straight or curved).

Choosing the next radius and velocity fully defines the
desired path for the next segment (note that straight and curved
track segments are forced to alternate). The car follows this
path using a pure pursuit controller where the look ahead
control distance is a function of the commanded velocity [42].
Running at 50 Hz, the pure pursuit controller computes the
desired forward velocity, rotational rate and heading angle
required to keep the car on the specified trajectory. Steering
angle commands and desired wheel velocities are computed
using the closed-loop controllers from [43], where the cross
track error term in the steering angle control law is omitted, as
the cross track error is reduced by the pure pursuit algorithm.
The Cy parameter in this control law (see Equation 8 in [43]) is
found by matching measured vehicle data to input commands.

The steering angle δ and commanded wheel speed ωcmd
are sent to the car’s microcontroller. Steering commands are
sent directly to the servo. Commands to the motor come from

a simple closed-loop controller around the commanded and
measured wheel speed. This proportional-integral wheel speed
controller is used to lessen the effects of the time-varying
battery voltage on the velocity dynamics.

An overview of the control loops used to control the vehicle
is shown in Fig. 10. One of the strengths of the MFRL
framework is that it can be used around existing closed-loop
controllers. These closed-loop controllers need not be the same
at the different levels of simulation.

The simulation environments for the RC car consist of a
naı̈ve simulator (Σ1) and a dynamics-based simulator (Σ2).
The naı̈ve simulator ignores the dynamic model of the car
and returns ideal segment times assuming the car followed the
requested trajectory exactly. As mentioned in Section III-C,
this simulator does not model rotational rate ψ̇ and so the
state-space mapping is not 1-to-1 when going from Σ1 to Σ2.
The higher-fidelity simulator models the basic dynamics of
the car, including wheel slip, where model parameters such
as the “Magic Tyre Parameters” [44] are estimated using test
data collected on the car. This simulator captures much of
the dynamic behavior of the car, although discrepancies in
real-world data and simulator data become more significant at
higher velocities (above about 2.0 m/s) and when the wheels
slip significantly. Therefore, learning needs to be performed
not only in the simulators, but also on the physical car.

Both car simulators (Σ1 and Σ2) run many times faster than
real time. Therefore, the total learning time in the experiments
below is dominated by the time spent collecting samples from
the real car. As mentioned earlier, the known-ness (m and
mknown) parameters for the base learners in these experiments
are set lower than the loose worst-case bounds from the
theoretical section, which is standard practice with the Rmax
family of algorithms.

B. Experiments for the Bandit Setting

The first RC car experiment takes place in the bandit setting:
choosing a single radii and two velocities (one for curves and
one for straightaways) at the beginning of a 3-lap run. We
allowed 5 values for radii (between 0.5 and 1.2 m) and 5
values for velocities (between 2.0 and 3.5 m/s), yielding 125
actions/arms in the bandit scenario. We evaluated Algorithm 1
in this setting as well as unidirectional transfer of Q-value
heuristics, that is, the transfer mechanism of [8] applied with
the KWIK-Rmax framework.

The simulators are deterministic (Σ2 has only a small
amount of added artificial noise) and so we set m = 1 at
Σ1 and Σ2. To account for real-world noise, we set m = 2
at Σ3, meaning 2 tries with a given parameter setting were
needed to determine its value. Both MFRL and unidirectional
transfer found a near-optimal policy within 60 steps on the
real car. We did not compare to a no-transfer algorithm since
it would need at least 250 trials to identify the optimal policy4.

Fig. 11(a) depicts the samples used in each simulator by
the algorithms. MF-Bandit on average uses fewer than half as

4While there are only 125 actions, each action must be tried m = 2 times
in the real world before it is known.

Input Only (Σ1)

Dynamics Sim
(Σ2)

Real Car (Σ3)
0

20

40

60

80

100

120

140

S
im

ul
at

io
n

S
te

ps

MFRL
UNI

(a) Bandit

Input Only (Σ1)

Dynamics Sim
(Σ2)

Real Car (Σ3)
0

1000

2000

3000

4000

5000

6000

7000

8000

S
im

ul
at

io
n

S
te

ps

MFRL
UNI

(b) State-based

Fig. 11: Samples used by MFRL and unidirectional trans-
fer (UNI) at each level in the (a) bandit case and the (b) state-
based case. In both experiments, the MFRL algorithm con-
verges to an equally fast policy when compared to unidirec-
tional transfer; however, MFRL uses over 50% fewer real-
world samples in the bandit case and over 30% fewer in the
state-based case. Each algorithm is tested 3 times with bars
showing the average.

TABLE III: State and action discretizations for the state-based
car MFRL results.

Value Min Max Disc. Small Disc. Large
c (segment) − − 2 2
ψ̇ (rad/s) -1.0 3.5 3 3
r (m) 0.5 1.2 3 4
vx (m/s) 2.0 3.2 3 6
rcmd (m) 0.5 1.2 3 4
vx,cmd (m/s) 2.0 3.2 3 6

TABLE IV: Parameters for the state-based car MFRL results.

Parameter Σ1 Σ2 Σ3

mLR
1 1 1

mLT
1 3 3

mknown 100 100 50
munknown − 10 10
β 0 0 −

many samples in the real-world when compared to the unidi-
rectional learner. Both MF-Bandit and unidirectional transfer
converged to policies with lap times of about 3.7 seconds per
lap and learned to use higher velocities on the straightaways
than the curves. These lap times are similar to the ones
found in the state-based setting described in the next section,
although the state-based policy is more robust to disturbances
and noise.

C. Experiments for the State-Based Setting

In the multi-state case, we used the state space described
in Section VIII-A and Fig. 9 and allowed the car to pick
a radius and velocity at the beginning of every segment (4
per lap). Because we are making closed-loop, state-based
decisions (i.e. changing velocities and radii in short segments),
we can reduce the action-space from the bandit setting, since
|Π| = O(|A||S|). Here we used 3 radii and 3 velocities (|A| =
9). The discretization of the state and action values is shown in

vx r ψ̇ c rcmd vcmd

c′ v′x r′ ψ̇′

st

st+1

Fig. 12: A Dynamic Bayesian Network representation of the
transition dynamics for the RC car. The next radius, forward
velocity, and rotational rate depend primarily on the com-
manded radius, commanded velocity and the current segment.
The next segment depends only on the current segment as the
car is forced to go from straight to curved to straight and so
forth. Note that this transition model decreases the maximum
factor order from 6 to 3.

Table III (small problem). Since the discretization in the state
space makes the simulation results potentially noisier (from
state aliasing), we used mLT

= 3 in Σ2 and the real car. The
MFRL parameters used for these results are shown in Table IV.

In the experiment, both MFRL and unidirectional transfer
converged to a policy with lap times of just under 3.7 seconds,
slightly faster than the bandit results from the previous section.
Fig. 11(b) shows the samples used in each level by MFRL
and unidirectional transfer. The MFRL algorithm converges
using an average of 35% fewer samples in the real world when
compared to unidirectional transfer.

The converged policy in the state-based experiments is
different from the bandit case, due to the versatility of state-
based control. Instead of an oval shape, MFRL chose different
values for the radius entering a curve versus the radius exiting
the curve. This led to initially wide turns towards the cones
followed by a sharp turn towards the straightaway, maximizing
the time the car could drive fast down the straight section.
Reaching this fairly complicated policy with a reasonable
number of real-world samples was made possible by MFRL’s
efficient use of samples from the previous levels. Particularly,
experience in Σ1 pruned policies that were too slow, while ex-
perience in Σ2 pruned policies that were too fast on the curves.
Finally, experience with the real car refined the policy under
the actual, but noisier, conditions in the real environment.

Videos showing the MFRL algorithm in the puddle world
and on the RC car are available at http://goo.gl/ZOX4hX and
http://ieeexplore.ieee.org.

D. Experiments using a DBN Representation and Generative
Access

In this section we use the notion of a generalized transition
function via a DBN introduced in Section VI-A to decrease the
required real-world samples needed to solve the track problem.
The independence assumptions made are shown in Fig. 12.
Because the closed-loop controllers guiding the car are fast
relative to the length of the track segments, we assume that
the state values at the end of a segment depend only on the
segment type and the actions chosen for that segment, and not
on the state values when the segment was started. There are

Input Only (Σ1)

Dynamics Sim
(Σ2)

Real Car (Σ3)
0

1000

2000

3000

4000

5000

6000

7000

8000

S
im

ul
at

io
n

S
te

ps

MFRL-TAB
MFRL-DBN
UNI-TAB
UNI-DBN

(a) DBN (3 runs)

Input Only (Σ1)

Dynamics Sim
(Σ2)

Real Car (Σ3)
0

5000

10000

15000

20000

25000

30000

35000

S
im

ul
at

io
n

S
te

ps

MFRL-DBN
MFRL-DBN-GEN
UNI-DBN

(b) DBN Large (2 runs)

Fig. 13: (a) Using the Dynamic Bayes Network (DBN) shown
in Fig. 12 to represent the transition function of the car
decreases the total samples used across the three levels of
learning by an average of 63% for both the MFRL and
unidirectional transfer cases. (b) With the larger domain spec-
ified in Table III, the MFRL algorithm decreases the samples
used on the real car by an average of 40% when compared
to a unidirectional transfer case. Note that the size of the
state/action space here is over 3400, but the MFRL algorithm
converges in fewer than 2500 samples on the real car.

cases when this assumption is violated, such as when the car
starts sliding out of control in one segment before transferring
to the next segment; however, for most of the state/action space
and our testing, this assumption holds true.

Fig. 13(a) shows the samples used to solve the track problem
using the small discretization values shown in Table III. The
DBN transition model significantly decreases the samples
needed to converge at all levels of the learning, with both the
MFRL and the unidirectional algorithms using more than 60%
fewer samples than when using the nominal tabular transition
function (results from Fig. 11(b)).

Comparing the MFRL algorithm using a DBN transition
model (MFRL-DBN) to unidirectional transfer with a DBN
(UNI-DBN), we see that MFRL-DBN uses slightly (though not
significantly) fewer samples in Σ3 while using more samples
in Σ2. This trade-off is by design, as MFRL assumes (under
Assumption 1) that using more samples in a lower-fidelity
simulator is worth using fewer samples in the real world,
since the real world samples are far more costly. Indeed, this
is true in the RC car experiments where actually running
the car in the lab takes significantly more time and effort
than the computer simulation. The combination of a DBN
and the MFRL transfer framework significantly decreases
the number of real world samples compared to the other
representations/framework combinations studied here.

This decreased number of required samples now allows us
to solve the track problem using a larger state/action space.
Table III shows state and action discretization values for the
larger problem solved using MFRL with a DBN transition
function representation. Note that, in this case, the state/action
size is nearly an order of magnitude larger than the state/action
size for the smaller problem.

http://goo.gl/ZOX4hX
http://ieeexplore.ieee.org

64202
Y Position (m)

2

1

0

1

2

X
Po

si
tio

n
(m

)

Allowable Area

1.6

1.8

2.0

2.2

2.3

2.5

2.7

2.9

3.1

3.3

Ve
lo

ci
ty

 (m
/s

)

(a) Initial real-world policy

64202
Y Position (m)

2

1

0

1

2

X
Po

si
tio

n
(m

)

Allowable Area

1.6

1.8

2.0

2.2

2.3

2.5

2.7

2.9

3.1

3.3

Ve
lo

ci
ty

 (m
/s

)

(b) Converged real-world policy

Fig. 14: Actual trajectories driving by the car during one of the learning runs. (a) As the MFRL algorithm transitions to the
real car for the first time, the attempted trajectories are too aggressive for the actual hardware, leading to the car frequently
exiting the allowable region. (b) By the end of the learning process, the car consistently drives fast along the straight segments
and slower around the turns, yielding fast lap times.

Fig. 13(b) shows that with this larger state/action space,
the MFRL algorithm uses on average more than 40% fewer
samples in the real world than the unidirectional transfer algo-
rithm. As in the puddle world examples, giving the algorithm
generative access to the simulators does little to improve the
convergence rate of the algorithm. In all of the tested cases,
the algorithms converged to policies very similar to those
found in the smaller state/action space problem described in
Section VIII-C. In these experiments, the car converged to
this policy with fewer real-world samples than the size of the
state/action space.

An example of the types of policies that the MFRL algo-
rithm converges to in these experiments is shown in Fig. 14.
Plots of the actual trajectory driven by the car for the first
several and last several laps during the learning process are
shown in Figs. 14(a) and 14(b), respectively. When the MFRL
algorithm first transitions to the real world, the optimism
assumption in the simulators is evident by the fact that the car
often attempts to drive quickly around the turns, a strategy that
works well in simulation but causes the car to drive out of the
feasible region in practice. Eventually, the algorithm discovers
that driving quickly on the straight-aways and slower around
the cones yields a safer and faster policy.

IX. CONCLUSIONS

We have introduced MFRL, which extends lessons from the
multi-fidelity optimization community to sequential decision
making problems. MFRL transfers heuristics from lower- to
higher-fidelity simulators to guide exploration. Unlike previ-
ous transfer learning techniques, our framework also allows
agents in lower-fidelity simulators to plan using higher-fidelity
learned model parameters, a tactic we have shown is crucial for
minimizing sub-optimal steps in the real world. Many robotics
domains already use simulators of varying fidelity during the
initial stages of hardware and software development. MFRL
can leverage these existing simulators to decrease the depen-
dence of RL algorithms on the physical hardware.

Throughout MFRL, the learning agents retain theoretical
sample efficiency guarantees over the entire learning process
because of our integration of the KWIK-Rmax framework, and
our empirical results show these algorithms are also efficient
in practice. Experiments with an RC car show that, not only
is the framework theoretically sound, but it is also a practical
technique for scaling RL algorithms to real-world decision
making problems.

APPENDIX

Proof of Theorem 1: First, we set ε̄ and δ̄, the accuracy
parameters for a learner of an individual action’s mean reward
at a particular level d. The following settings will be sufficient
for the theorem:

ε̄ =
ε

2D
, δ̄ =

δ

|A|2D. (4)

Instantiating m based on (1) with these values and applying
Hoeffding’s inequality [33] produces a sample complexity
bound of O(D

2

ε2 log(|A|
2D
δ)). There are |A| arms at the given

level, thus yielding the bound given in the theorem statement.
This bound guarantees that, at each level d, if an arm is
pulled m times, the rewards are learned with ε̄ accuracy with
probability 1−δ̄. Applying a Union bound across actions gives
a probability of failure at a specific level d of δ

|A|D .
Each execution at a level must learn a new action’s reward

before moving up or down, and once an arm’s value is set from
above it cannot be sampled at the current level. Therefore,
by the Pigeonhole principle, there can be at most |A|D level
changes (changes to d). Applying a Union bound across these
|A|D possible runs, each with failure probability δ

|A|D , the
total probability of failure in the algorithm is δ, satisfying the
overall failure bound. Since each level achieves accuracy of
ε

2D , we can add the potential errors across levels to determine
the total error due to pruning out actions based on rewards
from below. This quantity is 2D ∗ ε

2D = ε, so the accuracy
requirements are fulfilled with the sample efficiency described
in the theorem statement.

Proof of Lemma 1: Set δ̄ and ε̄ based on (4) and again
instantiate each individual arm’s KWIK Learner with m based
on (1). As above, by Hoeffding’s inequality we are ensured
that, with probability 1−δ, the learners will introduce no more
than ε error throughout the process.

Now consider action a as above. At each level d′ ≥ d, by
Definition 2, we have that the expectation on the reward of
a∗D will satisfy

Rd′(a
∗
D) ≥ RD(a∗D)−

D−1∑
d̄=d

βd̄. (5)

From the lemma’s assumption, we also have:

µd < RD(a∗D)−
D−1∑
d̄=d

βd̄ − ε. (6)

Combining these two inequalities shows that at level d′ we will
have Rd′(a∗D) > µd. Since the upper bound Ud′a∗ ≥ Rd′(a∗)
with high probability, we also have Ud′a∗ > µd. This means
whenever we enter level d′, action a∗D will be used before a.
By Hoeffding’s inequality, pulling arm a∗D m times will give
us a mean reward estimate R̂d′(a∗D) ≥ Rd′(a∗D)− ε̄ with high
probability, so there will also be no need to pull arm a at level
d′ after collecting these m samples.

Proof of Theorem 2: Consider any action a executed in
ΣD and its associated µD−1 values at the next lower-fidelity
simulator as defined in Lemma 1. From Lemma 1, we have
µD−1 ≥ RD(a∗D)−βD−1−ε̄. Otherwise, with high probability,
a would have been pruned and not executed in ΣD. If a is
near optimal we are done. If not, then by line 8 of Algorithm 1
the algorithm must have taken action a at level D − 1 and,
with high probability, found UD(a) = R̂D−1(a) ≥ RD(a∗D)−
βD−1− ε̄. Therefore, the only way to determine that a is sub-
optimal is to execute it in ΣD.

Proof of Theorem 3: For the first portion, we begin by
noting that, when entering a level, the KWIK-Rmax algorithm
at each instantiation makes only a polynomial number of
suboptimal steps (where V π(s) < V ∗(s) − ε). This bound
on the number of suboptimal steps is a known property of
the KWIK-Rmax algorithm [7], [34]. We also note that the
derivation of this property shows that “unknown” states are
only encountered a polynomial number of times. In fact, this
is exactly B(ε, δ) where B is the KWIK bound for learning
the transition and reward functions.

Since we wish to limit the number of samples used at each
level and not just the number of suboptimal steps, we need to
also bound the number of optimal steps taken at level d. For
this, we utilize mknown as described in (2). There can be at
most mknown − 1 steps between encounters with “unknown”
states, and, since the latter can only occur B(ε̄, δ̄) times, this
results in at most B(ε̄, δ̄)(mknown − 1) samples.

We also need to limit the number of steps before moving to
another level. For moving down to level d− 1, a state/action
pair at d− 1 can only be unknown if it is unknown at level d.
Therefore, the bound on the number of steps before this might
happen is the same as the number of steps before learning all
the unknown states: B(ε̄, δ̄)(mknown − 1). For moving up to
level d + 1, a maximum of B(ε̄, δ̄)(mknown − 1) + mknown

steps is needed to reach the conditions for going to the next
higher level of fidelity.

Now we need to show that if mknown known states in a
row are encountered, then, with high probability, we have
identified the optimal policy at the current level. This property
has been shown previously in Theorem 4 of [34], which we
briefly recount here. First, we can define an escape probability
Pr(W) of encountering an unknown state. Then, we have
V π(st,mknown) ≥ V πMk

(st,mknown) − Pr(W)Vmax, where
V π(st,mknown) is the value of running policy π from s for
mknown steps. By using the closeness of this finite-horizon
sum to the infinite discounted sum and several properties of the
KWIK-Rmax algorithm, Li showed that V π(st,mknown) ≥
V ∗(st)− 3ε

4 −Pr(W)Vmax. If Pr(W) < ε
4Vmax

, then we have
a very low probability of reaching an unknown state, and it can
be shown that the current policy is near-optimal. Otherwise,
Pr(W) ≥ ε

4Vmax
, which means that the probability of reaching

an unknown state is high, and, with high probability, an
unknown state will be encountered before mknown known
states are seen in a row.

For the number of possible changes to d, D + 2D|Σ| is
an upper bound on the number of level changes because
each backtrack can only occur when at least one parameter
is learned, and the number of parameters in the system is
|Σ|D. The number of “up” entries can only be D more than he
number of down entries, giving us D+2D|Σ| level changes.

Proof of Lemma 2: The proof of this property is similar
to the proof of Lemma 1 so here we outline the argument.

We set δ̄ and ε̄ based on (3) to ensure the accuracy of
the known model parameters throughout the learning process.
Through the simulation lemma (Lemma 4 of [45]) it is known
that a learned MDP with ε-accurate parameters will model the
value function with comparable loss (adding some additional,
but still polynomial, terms).

Therefore, a chain of inequalities similar to those in
Lemma 1 can be formed, but now replacing R with Q from the
lower-fidelity simulators. The situation in each state becomes
exactly the same as in the single-state bandit case, where an
action will not be chosen if its optimistic value has fallen
beyond the optimal action’s Q-value as stated in the lemma.

ACKNOWLEDGMENT

This work was partially supported by the National Sci-
ence Foundation Graduate Research Fellowship under grant
No. 0645960 and by the Office of Naval Research Science
of Autonomy program under contract No. N000140910625.
The authors also acknowledge Boeing Research & Technology
for support of the facility in which the experiments were
conducted.

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement Learning, an Introduction.
Cambridge, MA: MIT Press, 1998.

[2] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” Int. J. Robot. Research, vol. 32, no. 11, pp. 1238–
1274, Aug. 2013.

[3] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,” in
Int. Conf. Mach. Learn., 1997, pp. 12–20.

[4] P. Abbeel, M. Quigley, and A. Y. Ng, “Using inaccurate models in
reinforcement learning,” in Int. Conf. Mach. Learn., 2006, pp. 1–8.

[5] J. Z. Kolter and A. Y. Ng, “Policy search via the signed derivative,” in
Robot.: Sci. and Syst., 2009, pp. 1–8.

[6] T. D. Robinson, K. E. Willcox, M. S. Eldred, and R. Haimes, “Mul-
tifidelity optimization for variable-complexity design,” in AIAA/ISSMO
Multidiscip. Anal. and Opt. Conf., 2006, pp. 1–18.

[7] L. Li, M. L. Littman, T. J. Walsh, and A. L. Strehl, “Knows what it
knows: a framework for self-aware learning,” Mach. Learn., vol. 82,
no. 3, pp. 399–443, Mar. 2011.

[8] T. A. Mann and Y. Choe, “Directed exploration in reinforcement learning
with transferred knowledge,” in European Workshop Reinforcement
Learn., 2012, pp. 59–76.

[9] T. Dean and K. Kanazawa, “A model for reasoning about persistence
and causation,” Comput. Intell., vol. 5, no. 2, pp. 142–150, Feb. 1989.

[10] S. Balakirsky and E. Messina, “A simulation framework for evaluating
mobile robots,” in Proc. Performance Metrics for Intell. Syst. Workshop,
2002, pp. 1–8.

[11] A. Staranowicz and G. L. Mariottini, “A survey and comparison of
commercial and open-source robotic simulator software,” in Proc. 4th
Int. Conf. Perv. Technol. Rel. to Assistive Env., 2011, pp. 56:1–56:8.

[12] M. Cutler, T. J. Walsh, and J. P. How, “Reinforcement learning with
multi-fidelity simulators,” in IEEE Int. Conf. Robot. and Autom., 2014,
pp. 3888–3895.

[13] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search
for robotics,” Found. and Trends in Robot., vol. 2, no. 12, pp. 1–142,
Feb. 2013.

[14] M. Deisenroth, D. Fox, and C. Rasmussen, “Gaussian processes for data-
efficient learning in robotics and control,” IEEE Trans. Pattern Anal. and
Mach. Intell., vol. 37, no. 2, pp. 408–423, Feb. 2015.

[15] S. Levine and V. Koltun, “Variational policy search via trajectory
optimization,” in Adv. in Neural Inf. Process. Syst., 2013, pp. 207–215.

[16] A. G. Kupcsik, M. P. Deisenroth, J. Peters, and G. Neumann, “Data-
efficient generalization of robot skills with contextual policy search.” in
Association for Adv. of Artificial Intell., 2013, pp. 1401–1407.

[17] E. Winner and M. M. Veloso, “Multi-fidelity robotic behaviors: Acting
with variable state information,” in Association for Adv. of Artificial
Intell., 2000, pp. 872–877.

[18] E. J. Schlicht, R. Lee, D. H. Wolpert, M. J. Kochenderfer, and B. Tracey,
“Predicting the behavior of interacting humans by fusing data from
multiple sources,” in Int. Conf. Unc. in Artificial Intell., 2012, pp. 756–
764.

[19] M. E. Taylor, P. Stone, and Y. Liu, “Transfer learning via inter-task
mappings for temporal difference learning,” J. Mach. Learn. Research,
vol. 8, no. 1, pp. 2125–2167, Dec. 2007.

[20] B. Fernández-Gauna, J. M. López-Guede, and M. Graña, “Transfer
learning with partially constrained models: Application to reinforcement
learning of linked multicomponent robot system control,” Robot. and
Autonomous Syst., vol. 61, no. 7, pp. 694–703, July 2013.

[21] M. G. Azar, E. Brunskill, and A. Lazaric, “Sequential transfer in multi-
armed bandits with finite set of models,” in Adv. in Neural Inf. Process.
Syst., 2013, pp. 2220–2228.

[22] E. Brunskill and L. Li, “Sample complexity of multi-task reinforcement
learning,” in Int. Conf. Unc. in Artificial Intell., 2013, pp. 122–131.

[23] N. Jakobi, “Evolutionary robotics and the radical envelope-of-noise
hypothesis,” Adaptive Behavior, vol. 6, no. 2, pp. 325–368, 1997.

[24] S. Koos, J.-B. Mouret, and S. Doncieux, “The transferability approach:
Crossing the reality gap in evolutionary robotics,” IEEE Trans. Evol.
Comput., vol. 17, no. 1, pp. 122–145, Feb. 2013.

[25] J. C. Zagal and J. Ruiz-Del-Solar, “Combining simulation and reality
in evolutionary robotics,” J. Intell. and Robot. Syst., vol. 50, no. 1, pp.
19–39, Mar. 2007.

[26] R. Moeckel et al., “Gait optimization for roombots modular robots-
matching simulation and reality,” in IEEE/RSJ Int. Conf. Intell. Robots
and Syst., 2013, pp. 3265–3272.

[27] A. L. Strehl, L. Li, and M. L. Littman, “Reinforcement learning in finite
mdps: Pac analysis,” J. Mach. Learn. Research, vol. 10, pp. 2413–2444,
Dec. 2009.

[28] F. A. Viana, V. Steffen Jr., S. Butkewitsch, and M. de Freitas Leal,
“Optimization of aircraft structural components by using nature-inspired
algorithms and multi-fidelity approximations,” J. Global Opt., vol. 45,
no. 3, pp. 427–449, Nov. 2009.

[29] A. Molina-Cristobal, P. R. Palmer, B. A. Skinner, and G. T. Parks,
“Multi-fidelity simulation modelling in optimization of a submarine
propulsion system,” in Vehicle Power and Prop. Conf., 2010, pp. 1–6.

[30] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. New York, NY: John Wiley & Sons, Inc., 1994.

[31] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
no. 3-4, pp. 279–292, May 1992.

[32] R. Brafman and M. Tennenholtz, “R-max - a general polynomial time
algorithm for near-optimal reinforcement learning,” J. Mach. Learn.
Research, vol. 3, pp. 213–231, Oct. 2002.

[33] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. American Statistical Association, vol. 58, no. 301, pp. 13
– 30, Mar. 1963.

[34] L. Li, “A unifying framework for computational reinforcement learning
theory,” Ph.D. dissertation, Computer Science Dept., Rutgers Univ., New
Brunswick, NJ, 2009.

[35] R. S. Sutton, “Generalization in reinforcement learning: Successful
examples using sparse coarse coding,” in Neural Inf. Process. Syst.,
1996, pp. 1038–1044.

[36] O.-A. Maillard, T. A. Mann, and S. Mannor, “”how hard is my mdp?”
the distribution-norm to the rescue,” in Adv. in Neural Inf. Process. Syst.,
2014, pp. 1835–1843.

[37] A. L. Strehl and M. L. Littman, “Online linear regression and its
application to model-based reinforcement learning,” in Adv. in Neural
Inf. Process. Syst., 2007, pp. 1417–1424.

[38] E. Brunskill, B. Leffler, L. Li, M. Littman, and N. Roy, “Provably
efficient learning with typed parametric models,” J. Mach. Learn.
Research, vol. 10, pp. 1955–1988, Dec. 2009.

[39] R. C. Grande, T. J. Walsh, and J. P. How, “Sample efficient reinforcement
learning with Gaussian processes,” in Int. Conf. Mach. Learn., 2014, pp.
1332–1340.

[40] C. Diuk, A. Cohen, and M. L. Littman, “An object-oriented represen-
tation for efficient reinforcement learning,” in Int. Conf. Mach. Learn.,
2008, pp. 240–247.

[41] C. Boutilier, R. Dearden, and M. Goldszmidt, “Stochastic dynamic
programming with factored representations,” Artificial Intell., vol. 121,
no. 1-2, pp. 49–107, Aug. 2000.

[42] S. Park, J. Deyst, and J. P. How, “Performance and lyapunov stability
of a nonlinear path following guidance method,” J. Guidance, Control,
and Dynamics, vol. 30, no. 6, pp. 1718–1728, Nov. 2007.

[43] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun, “Au-
tonomous automobile trajectory tracking for off-road driving: Controller
design, experimental validation and racing,” in American Control Conf.,
2007, pp. 2296–2301.

[44] E. Velenis, E. Frazzoli, and P. Tsiotras, “Steady-state cornering equilibria
and stabilisation for a vehicle during extreme operating conditions,” Int.
J. Vehicle Autonomous Syst., vol. 8, no. 2, pp. 217–241, Oct. 2010.

[45] M. J. Kearns and S. P. Singh, “Near-optimal reinforcement learning in
polynomial time,” Mach. Learn., vol. 49, no. 2-3, pp. 209–232, Nov.
2002.

Mark Cutler received a B.S. degree in Mechan-
ical Engineering from Brigham Young University
in 2010 and a S.M. degree in Aeronautics and
Astronautics from MIT in 2012. He is currently a
Ph.D. student at MIT. His research interests include
aggressive flight control and learning algorithms for
fast robotic systems.

Thomas J. Walsh is a research engineer with Kro-
nos Incorporated. He received his Ph.D. in Computer
Science at Rutgers University, and previously held
research positions at MIT, the University of Kansas,
and the University of Arizona. His research focuses
on efficient learning in sequential decision making
problems with rich structure.

Jonathan P. How is the Richard Maclaurin Pro-
fessor of Aeronautics and Astronautics at MIT. He
received a B.A.Sc. from the University of Toronto
in 1987 and his S.M. and Ph.D. in Aeronautics and
Astronautics from MIT in 1990 and 1993. Prior to
joining MIT in 2000, he was an Assistant Professor
at Stanford University. Research interests include
robust coordination and control of autonomous ve-
hicles. He is an Associate Fellow of AIAA, and a
senior member of IEEE.

	INTRODUCTION
	RELATED WORK
	BACKGROUND AND ASSUMPTIONS
	Reinforcement Learning
	Sample Complexity and the KWIK Framework
	Simulator Assumptions and Objectives

	MULTI-FIDELITY BANDIT OPTIMIZATION
	A MF-Reward Learning Algorithm
	Bandit Examples
	Theoretical Analysis

	MULTI-FIDELITY REINFORCEMENT LEARNING
	The MFRL Algorithm
	Puddle World with MFRL
	Theoretical Analysis
	Properties of MFRL with Missing Variables
	Sensitivity of MFRL Parameters

	More General Representations through the KWIK Framework
	Dynamic Bayesian Networks
	MFRL DBNs for the Puddle World

	Generative Simulators
	RC CAR RESULTS
	Experimental Setup
	Experiments for the Bandit Setting
	Experiments for the State-Based Setting
	Experiments using a DBN Representation and Generative Access

	CONCLUSIONS
	Appendix
	References
	Biographies
	Mark Cutler
	Thomas J. Walsh
	Jonathan P. How

