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Bayesian Nonparametric Reward Learning from
Demonstration

Bernard Michini, Thomas J. Walsh, Ali-akbar Agha-mohammadi, and Jonathan P. How

Abstract—Learning from demonstration provides an attractive
solution to the problem of teaching autonomous systems how to
perform complex tasks. Reward learning from demonstration is
a promising method of inferring a rich and transferable repre-
sentation of the demonstrator’s intents, but current algorithms
suffer from intractability and inefficiency in large domains due
to the assumption that the demonstrator is maximizing a single
reward function throughout the whole task. This paper takes
a different perspective by assuming that the reward function
behind an unsegmented demonstration is actually composed of
several distinct subtasks chained together. Leveraging this as-
sumption, a Bayesian nonparametric reward learning framework
is presented that infers multiple subgoals and reward functions
within a single, unsegmented demonstration. The new framework
is developed for discrete state spaces and also general continuous
demonstration domains using Gaussian process reward represen-
tations. The algorithm is shown to have both performance and
computational advantages over existing inverse reinforcement
learning methods. Experimental results are given in both cases,
demonstrating the ability to learn challenging maneuvers from
demonstration on a quadrotor and a remote-controlled car.

Index Terms—Reward learning, demonstration, inverse rein-
forcement learning

I. INTRODUCTION

As technology continues to play a larger role in society,
humans interact with autonomous systems on a daily basis.
It is reasonable to assume that non-experts will increasingly
interact with robotic systems and will have an idea of how the
system should act. For the most part, however, autonomous
control algorithms are currently developed and implemented
by technical experts such as roboticists and computer program-
mers. Modifying the behavior of these algorithms is mostly
beyond the capabilities of the end-user.

Learning from demonstration provides an attractive solution
to this problem for several reasons [1]. The demonstrator is
typically not required to have expert knowledge of the domain
dynamics. This opens autonomous algorithm development to
non-robotics-experts and also reduces performance brittleness
from model simplifications. Also, demonstration is already
an intuitive means of communication for humans, as we
use demonstration to teach others in everyday life. Finally,
demonstrations can be used to focus the learning process
on useful areas of the state space [2], as well as provably
expand the class of learnable functions [3]. There have been
a wide variety successful applications that highlight the utility
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and potential of learning from demonstration. Many focus on
teaching basic motor skills to robotic systems, such as object
grasping [4], walking [5], and quadraped locomotion [6, 7].
More advanced motor tasks have also been learned [8–10].
While the previous examples are focused mainly on robotics,
there are several instances of learning from demonstration in
more complex, high-level tasks such as autonomous driving
[11, 12], obstacle avoidance and navigation [13], and un-
manned acrobatic helicopter flight [14].

A. Reward Learning from Demonstration

Learning from demonstration methods can be distinguished
by what is learned from the demonstration. Broadly, there
are two classes: those that attempt to learn a policy from
the demonstration, and those that attempt to learn a task de-
scription from the demonstration. In policy learning methods,
the objective is to learn a mapping from states to actions
that is consistent with the state-action pairs observed in the
demonstration. In that way, the learned policy can be executed
on the autonomous system to generate behavior similar to that
of the demonstrator.

Policy methods are not concerned with what is being done
in the demonstration, but rather how it is being done. In
contrast, task learning methods use the demonstration to infer
the objective that the demonstrator is trying to achieve. A
common way of specifying such an objective is to define an
associated reward function, a mapping from states to a scalar
reward value. The task can then be more concretely defined
as reaching states that maximize accumulated reward. This
paper focuses primarily on the problem of reward learning
from demonstration via the discovery of subgoals.

Reward learning is challenging for several fundamental
reasons. First, learning a reward function from demonstration
necessitates a behavioral model of the demonstrator that
predicts what actions would be taken given some reward
function (or objective). The actions predicted by the model
are compared to the demonstration as a means of inferring
the reward function of the demonstrator. The demonstrator
model is typically difficult to obtain in that it requires solving
for a policy that maximizes a candidate reward function.
Methods that require only sample access to the demonstrator
alleviate this problem. Second, the demonstration typically
admits many possible corresponding reward functions, i.e.,
there is no unique reward function that explains a given set
of observed actions. Finally, the demonstration itself can be
inconsistent and the demonstrator imperfect. Thus, it cannot
be assumed that the actions in the demonstration optimize
accumulated reward, only that they attempt to.
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Despite these difficulties, reward learning has several per-
ceived advantages over policy learning. A policy, due to its
nature as a direct mapping from states to actions, becomes
invalid if the state transition model changes (actions may have
different consequences than they did in the original demonstra-
tion). Also, a learned policy mapping must be defined for each
state to be encountered, relying on a large demonstration set or
additional generalization methods. A learned reward function,
however, can be used to solve for a policy given knowledge
of the state transition model, making it invariant to changes
in domain dynamics and generalizable to new states. Thus, a
reward function is a succinct and transferable description of
the task being demonstrated and still provides a policy which
generates behavior similar to that of the demonstrator.

This paper develops reward learning techniques that are
scalable to large, real-world, continuous demonstration do-
mains while retaining computational tractability. Achieving
both of these goals generally requires assumptions to be made
about the structure of the reward function (e.g., [11, 15]). In
this work, the following assumption (a more formal instantia-
tion of which is presented in Definition 1) is made about the
reward function:

Assumption 1. The reward function underlying the demon-
strator’s behavior is assumed to be composed of several sub-
task reward functions based on subgoals, with the behaviors
in each subtask chained together sequentially.

There is a long history of using such subgoal-based rewards,
and the technique has been successful at modeling a diverse
set of tasks [16–19]. Furthermore, this focus on subtasks
within a larger demonstration provides a practical alternative to
many previous reward learning methods that assume a single
monolithic reward function is responsible for the demonstra-
tion. Because of this assumption, the core component for
reward learning in this paper is the learning of subgoals
from demonstrations. However, the framework presented here
requires these identified subgoals be transformed into a reward
function to assess their fit to the demonstration and ultimately
execute learned behavior.

Based on this assumption, two new reward-learning methods
are presented that utilize Bayesian nonparametric mixture
models to simultaneously partition the demonstration and learn
associated reward functions. While the type and complexity of
reward functions learned are not fundamentally constrained by
the algorithms presented, to clarify the process, the methods
are developed using simple state-based and feature-based
reward functions. Several key approximation methods are
also developed with the aim of improving efficiency and
tractability in large continuous domains. Simulation results
are given which highlight key properties and advantages, and
experimental results validate the new algorithms applied to
challenging robotic systems.

The next subsection highlights relevant previous work in the
field of learning from demonstration, which is followed by a
more detailed summary of the paper contributions.

B. Related Work
Because of Assumption 1, inferring the particular subgoals

leading to the demonstrated behavior is the central component

of the reward learning process. However, in order to fit
the observed trajectories to particular subgoals and actually
execute behavior, the framework also calculates a full reward
function based on the subgoals. Thus this work has features
of Inverse Reinforcement Learning (IRL) algorithms that learn
reward functions as well as goal inference algorithms. We
describe methods from both areas below.

Of the learning from demonstration methods that learn a
task description, most do so by learning a reward function
that rationalizes the observed demonstrations. This is typically
done with a known (at least approximately) model of the
system dynamics. In the context of control theory, the problem
of finding such a reward function is known as Inverse Optimal
Control, originally posed by Kalman and solved in [20]. Ng
and Russell cast the problem in the reinforcement learning
framework [21] and termed it Inverse Reinforcement Learning
(IRL), highlighting the fact that the reward function in many
RL applications is not known a priori and must instead be
learned. IRL seeks to learn the reward function which is argued
in [21] to be the “most succinct, robust, and transferable
definition of the task”.

There have since been a number of IRL methods developed,
and most make assumptions about the nature of the reward
function (as is done in Assumption 1 above). For instance,
many popular methods (e.g., [11, 15]) use a weighted-features
representation for the unknown reward function. Specifically,
the reward function is represented as

R(s) = wTφ(s) (1)

where w is a vector of weights and φ is a function mapping
a state s to a feature vector. In such a setting, Abbeel and Ng
solve a quadratic program iteratively to find feature weights
that attempt to match the expected feature counts of the
resulting policy with those of the expert demonstrations [11].
A game-theoretic approach for the same problem is taken
in [15], whereby a minimax search is used to minimize
the difference in weighted feature expectations between the
demonstrations and learned policy. In [22], IRL is generalized
to multiple tasks from multiple demonstrations via formalizing
it as a statistical preference elicitation. Ratliff et al. [6, 23]
take a max-margin approach, finding a weight vector that
explains the expert demonstrations by optimizing the margin
between competing explanations. Ziebart et al. [24] match
feature counts using the principle of maximum entropy to
resolve ambiguities in the resulting reward function. In [25],
the parameters of a generic family of parametrized rewards
are found. Ramachandran and Amir [26] learn a finite vector
of reward parameters using Bayesian Inverse Reinforcement
Learning (BIRL). The above approaches assume a given
parametrization of the reward function (such as the weighted-
features representation in (1)) and learn a vector of parameters.

These IRL algorithms are similar in that they attempt to
find a single reward function that explains the entirety of the
observed demonstration. These approaches have been highly
successful in learning to perform a number of tasks such as
simulated driving [11] and adventure games [26]. However,
such reward functions can have difficulties capturing natural
behavior in sequential robot tasks. For instance, consider a
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robot performing a round-trip to and from a point with features
representing the distance to the origin and distance to the turn-
around point. Unfortunately, these features are not enough
to capture a linear reward function of the type described in
(1), since the weight on the first feature needs to be higher
on the way out, but the weight on the second feature needs
to be higher on the way back. Doubling the number of
features by indicating the conjunction of distance with the
stage of the task (e.g., 0.3 meters from the origin and in the
“return” stage) makes the representation feasible, but increases
the complexity of reward learning for two reasons. First, as
the complexity of the reward model increases (i.e., as more
features are added to φ), so too does the number of free
parameters that need to be learned. Thus, the dimension of
the parameter space is larger and the search for candidate
functions becomes increasingly difficult according to the curse
of dimensionality. Second, the process of evaluating candidate
reward functions against the demonstrated trajectories requires
solving for the optimal policy given the candidate reward
function, the computational cost of which typically scales
poorly with domain size, even for approximate solutions [27].
Thus finding a single, complex reward function to explain
the observed demonstrations requires searching over a large
space of possible solutions and substantial computational effort
to evaluate each candidate. Further analysis comparing the
computational complexities of previous methods versus the
proposed algorithm is given in Section III-G.

In an attempt to more efficiently model situations like the
“round-trip” scenario, this work makes a different assumption
than the linearity constraints above. Instead, it assumes (under
Assumption 1 and more formal definitions to follow) that the
demonstrator’s reward function is composed of many reward
functions and is partitioned by subgoals. As an example, the
monolithic reward function in “round-trip” can be partitioned
into two reward functions, with the turn-around acting as a
subgoal. The Bayesian Nonparametric Inverse Reinforcement
Learning (BNIRL) method introduced in this paper searches
for such a partitioning and the corresponding reward func-
tions (one for each partition), thereby avoiding the potential
intractability of searching for a single reward function. We
note that while this assumption makes it easier to learn the
“round-trip” behavior, other tasks such as a continuous driving
simulator [11] will be easier to represent with the linearity
assumption behind Equation 1.

Several methods have been developed that also address the
issue of identifying multiple subtasks within an unsegmented
demonstration. Grollman et al. characterize the demonstration
as a mixture of Gaussian process experts [28] and find multiple
policies describing the demonstration. However, that method
learns such a policy directly, without building a reward func-
tion to represents the task itself. Thus, if the system dynamics
change, the learned policy may not complete the previously
demonstrated task. By contrast, our BNIRL method learns
such a reusable reward function. Fox et al. also use a Bayesian
nonparametric framework, but cast the demonstration as a
switched linear dynamic system, and infer a hidden Markov
model to indicate switching between systems [29]. However,
that work is focused on segmentation, not reward learning or

actually enacting a learned policy, which is the core of this
work. Extracting motion primitives is also a common strategy
for segmenting continuous trajectories, e.g., by detecting dy-
namic switches [30] or by identifying switched latent force
models [31]. However, neither of these methods attempt to
learn multiple reward functions from unsegmented demon-
stration, which is advantageous for the reasons discussed in
Section I-A. Finally, several methods exist which learn sets of
attractors [32] or via-points [33, 34] from a trajectory. These
are similar in that they capture subgoal-like intent, but do not
use Bayesian nonparametric techniques to explicitly learn the
number of subgoals. Also, in contrast to attractors and via-
points, the subgoal reward representation in this work can be
extended to more complex feature parametrizations.

Throughout the paper, subgoals are used as simple reward
representations to explain partitioned demonstration data. The
notion of defining tasks using a corresponding subgoal was
proposed by Sutton et al. along with the options MDP
framework [16]. Many other methods exist that learn options
from a given set of trajectories. For example, in [35], diverse
density across multiple solution paths are used to discover such
subgoals. Several algorithms use graph-theoretic measures to
partition densely-connected regions of the state space and
learn subgoals at bottleneck states [36, 37]. Bottleneck states
are also identified using state frequencies [38] or using a
local measure of relative novelty [39]. Of these methods, all
require multiple trial trajectories to learn subgoals and, fur-
thermore, none have the ability to learn reward functions from
demonstration. The latter is an important distinction because
identifying a bottleneck state does not automatically induce a
policy for actually reaching that state, while BNIRL’s inference
of a reward model combined with the known dynamics model
does induce such a policy. BNIRL is also shown to work with
small amounts of demonstration data, and in many cases with
just a single trajectory.

One similar algorithm from the subgoal discovery literature
is the segmentation and skill construction algorithm of Niekum
et al. [18], which uses a Bayesian nonparametric clustering
technique to partition trajectories and then learns Dynamic
Motion Primitives (DMPs) to represent the skill used in each
segment. DMPs model each of the partitions using a set of
nonlinear differential equations and ultimately provide a set
of weights for controllers that determine the policy for that
segment. While this algorithm has many of the components of
BNIRL, its assumptions and domains of application are sig-
nificantly different. BNIRL can be applied in general Markov
Decision Processes (MDPs), both discrete or continuous, cre-
ates partitions based on changes in the user’s actions, and
can learn reward functions for each partition. These BNIRL
reward functions are then combined with a known dynamics
model to generate a policy. By contrast, Niekum et al. do
not assume a dynamics model is available and do not directly
use changes in the demonstrator’s action selection to perform
segmentation. Instead, they assume that each skill can be
represented by a DMP dynamics model, which limits their
approach to continuous domains where DMPs can be applied
(as opposed to the general MDP reward functions of BNIRL).
Also, learning DMP descriptions of skills produces a set of
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controller weights, essentially a policy for each segment, not
a reward function. Thus, if the underlying dynamics of the
system change, then the task will need to be relearned. This
learning of DMP policies is a significant difference from
reward learning using a general MDP model as performed
by BNIRL.

C. Main Contributions

This paper focuses broadly on improving existing reward
learning from demonstration methods and developing new
methods that enable scalable reward learning for real-world
robotic systems. We present a new reward learning framework
called BNIRL, which uses a Bayesian nonparametric mixture
model to automatically partition the data and find a set of
simple reward functions corresponding to each partition. The
simple rewards are interpreted intuitively as subgoals, which
can be used to predict actions or analyze which states are
important to the demonstrator. Convergence of the BNIRL
algorithm in 0-1 loss is proven and several computational
advantages of the method over existing IRL frameworks are
shown, namely the search over a finite (as opposed to infinite)
space of possible rewards and the ability to easily parallelize
most of the BNIRL computational requirements.

Two approximations to the demonstrator likelihood function
further improve computational tractability in large domains.
One approach uses the Real-time Dynamic Programming
(RTDP) [40] framework to approximate the optimal action-
value function. RTDP effectively limits computation of the
value function to necessary areas of the state space, allowing
the complexity of the BNIRL reward learning method to
scale with the size of the demonstration set, not the size
of the full state space. In the second method, an existing
closed-loop controller takes the place of the optimal value
function. This avoids having to specify a discretization of the
state or action spaces, extending the applicability of BNIRL
to continuous demonstration domains when a closed-loop
controller is available.

BNIRL can learn multiple reward functions from a single
demonstration, but it is only generally applicable in discrete
domains. The Bayesian nonparametric reward learning frame-
work is extended to general continuous demonstration domains
using Gaussian process reward representations. The resulting
algorithm, termed Gaussian process subgoal reward learning
(GPSRL), is the only learning from demonstration method
able to learn multiple reward functions from unsegmented
demonstrations in general continuous domains. GPSRL does
not require discretization of the continuous state space and
focuses computation efficiently around the demonstration it-
self. Learned subgoal rewards are cast as Markov decision
process options to enable execution of the learned behaviors
by the robotic system and provide a principled basis for
future learning and skill refinement. A method is developed
for choosing the key confidence parameter in the GPSRL
likelihood function, and furthermore this method can be used
to quantify the relative skill level of the demonstrator enabling
comparison between multiple demonstrators.

While simulation results are given throughout, the final
contribution of the paper is to provide experimental results

validating the ability of the proposed methods to learn reward
from demonstrations in real-world robotic domains. Quadrotor
flight maneuvers are learned from a human demonstrator using
only hand motions with the BNIRL algorithm. The GPSRL
algorithm is experimentally applied to a robotic car domain,
learning multiple difficult maneuvering skills such as drifting
turns from a single unsegmented demonstration.

This work combines both previously-published and unpub-
lished algorithms and results. The BNIRL framework and
associated simulation results in Section III first appeared in
[41]. The approximations methods to enable scalability of
BNIRL in Section IV and the associated quadrotor helicopter
experimental results in Section VI-A first appeared in [42].
This is the first refereed publication presenting the GPSRL
framework in Section V and the associated remote-controlled
car experiments in Section VI-B.

II. BACKGROUND

This section provides a background in the mathematical
concepts that this paper builds upon. Throughout the paper,
boldface is used to denote vectors and subscripts are used to
denote the elements of vectors (i.e., zi is the ith element of
vector z).

A. Markov Decision Processes and Options

A finite-state Markov Decision Process (MDP) is a tuple
(S,A, T, γ,R) where S is a set of states, A is a set of actions,
T : S×A×S 7→ [0, 1] is the function of transition probabilities
such that T (s, a, s′) is the probability of being in state s′ after
taking action a from state s, R : S 7→ R is the reward function,
and γ ∈ [0, 1) is the discount factor. A stationary policy
is a function π : S 7→ A. Ref. [43] provides the following
definitions and results:

1) The infinite-horizon expected reward for starting in state
s and following policy π thereafter is given by the value
function V π(s,R):

V π(s,R) = Eπ

[ ∞∑
i=0

γiR(si)

∣∣∣∣∣ s0 = s

]
(2)

Assuming state-based reward (i.e., rewards that do not depend
on actions, as in [26]), the value function satisfies the following
Bellman equation for all s ∈ S:

V π(s,R) =
∑
s′

T (s, π(s), s′) [R(s′) + γV π(s′)] (3)

The so-called Q-function Qπ(s, a,R) is defined as the infinite-
horizon expected reward for starting in state s, taking action
a, and following policy π thereafter.

2) A policy π is optimal iff, for all s ∈ S:

π(s) = argmax
a∈A

Qπ(s, a,R) (4)

An optimal policy is denoted as π∗ with corresponding value
function V ∗ and action-value function Q∗.

An option, o, is a temporally-extended action defined by
the tuple (Io, πo, βo) [16]. Io : S 7→ {0, 1} is the initiation
set, defined to be 1 where the option can be executed and 0
elsewhere. πo : S 7→ A is the option policy for each state
where the option is defined according to Io. Finally, βo : S 7→
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[0, 1] is the terminating condition, defining the probability that
the option will terminate in any state for which the option is
defined. Any method which creates new skills (in the form of
options) must define at least Io and βo. The option policy πo
can be learned using standard RL methods.

B. Inverse Reinforcement Learning
Inverse reinforcement learning (IRL) [21] is the problem

of inferring the reward function responsible for generating
observed optimal behavior. Formally, IRL assumes a given
MDP/R, defined as a MDP for which everything is specified
except the state reward function R(s). Observations (demon-
strations) are provided as a set of state-action pairs:

O = {(s1, a1), (s2, a2), ..., (sN , aN )} (5)

where each pair Oi = (si, ai) indicates that the demonstrator
took action ai while in state si. It is assumed that states
and actions are fully-observable, and problems associated with
partial state/action observability are not considered. Inverse
reinforcement learning algorithms attempt to find a reward
function that rationalizes the observed demonstrations, i.e.,
find a reward function R̂(s) whose corresponding optimal
policy π∗ matches the observations O.

C. Chinese Restaurant Process Mixtures
The algorithms developed throughout the paper combine

IRL with a Bayesian nonparametric model for learning mul-
tiple reward functions, namely the Chinese restaurant process
mixture model. The Chinese restaurant process (CRP) is a
sequential construction of random partitions used to define a
probability distribution over the space of all possible partitions
[44]. The process by which partitions are constructed follows
a metaphor whereby customers enter a Chinese restaurant and
must choose a table. In the analogy, tables are used to represent
partitions, and the Chinese restaurant has a potentially infinite
number of tables available. The construction proceeds as
follows:

1) The first customer sits at the first table.
2) Customer i arrives and chooses the first unoccupied

table with probability η
i−1+η , and an occupied table with

probability c
i−1+η , where c is the number of customers

already sitting at that table.
The concentration hyper-parameter η controls the probability
that a customer starts a new table. Using zi = j to denote that
customer i has chosen table j, Cj to denote the number of
customers sitting at table j, and Ji−1 to denote the number
of tables currently occupied by the first i − 1 customers, the
assignment probability is defined as:

P (zi = j|z1...i−1)=

{
CJ(i− 1 + η)−1 j ≤ Ji−1

η(i− 1 + η)−1 j = Ji−1 + 1
(6)

This process induces a distribution over table partitions that is
exchangeable [45], meaning that the order in which customers
arrive can be permuted and any partition with the same pro-
portions will have the same probability. A Chinese restaurant
process mixture is defined using the same construct, but each
table is endowed with parameters θ of a probability distribution
which generates data points xi:

1) Each table j is endowed with parameter θj drawn i.i.d.
from a prior P (θ).

2) For each customer i that arrives:
a) The customer sits at table j according to (6) (the

assignment variable zi = j).
b) A data-point xi is drawn i.i.d. from P (x|θj).

The ability of the CRP mixture to model data that are
generated from a random and potentially infinite number of
partitions is critical to the algorithms in this paper.

D. Gaussian Processes

A Gaussian process (GP) is a distribution over functions,
widely used in machine learning as a nonparametric regression
method for estimating continuous functions from sparse and
noisy data [46]. In this paper, Gaussian processes will be used
as a subgoal reward representation which can be trained with
a single data point but has support over the entire state space.
A training set consists of input vectors X = [x1, ...,xn] and
corresponding observations y = [y1, ..., yn]

>. The observa-
tions are assumed to be noisy measurements from the unknown
target function f , i.e., yi = f(xi) + ε, where ε ∼ N (0, σ2

ε ) is
Gaussian noise. A zero-mean Gaussian process is completely
specified by a covariance function k(·, ·), called a kernel.
Given the training data {X,y} and covariance function k(·, ·),
the Gaussian process induces a predictive marginal distribu-
tion for test point x∗ which is Gaussian distributed so that
f(x∗) ∼ N (µf∗ , σ

2
f∗

) with mean and variance given by:

µf∗ = k(x∗,X)
(
K + σ2

εI
)−1

y (7)

σ2
f∗ = k(x∗,x∗)− k(x∗,X)

(
K + σ2

εI
)−1

k(X,x∗) (8)

where K ∈ Rn×n is the Gram matrix with Kij = k(xi,xj).
Selecting a kernel is typically application-specific, since

the function k(x,x′) is used as a measure of correlation (or
distance) between states x and x′. A common choice (used
widely throughout the paper) is the squared exponential (SE)
kernel kSE(x,x′) = ν2 exp(−.5(x−x′)>Λ−1(x−x′)), where
Λ = diag(λ2

1, ..., λ
2
nx

) are the characteristic length scales of
each dimension of x and ν2 describes the variability of f .
Thus θSE = {ν, λ1, ..., λnx} is the vector of hyper-parameters
which must be chosen for the squared exponential kernel.

III. BAYESIAN NONPARAMETRIC INVERSE
REINFORCEMENT LEARNING

Of the many IRL algorithms developed [2, 11, 15, 23–26],
most attempt to find a single monolithic reward function that
explains the entirety of the observed demonstration set. This
reward function must then be necessarily complex in order to
explain the data sufficiently, especially when the task being
demonstrated is itself complicated. Searching for a complex
reward function is fundamentally difficult for two reasons.
First, as the complexity of the reward model increases, so too
does the number of free parameters needed to describe the
model. Thus the search is over a larger space of candidate
functions. Second, the process of testing candidate reward
functions requires solving for the MDP value function, the
computational cost of which typically scales poorly with the
size of the MDP state space, even for approximate solutions
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[27]. Thus finding a single, complex reward function to explain
the observed demonstrations requires searching over a large
space of possible solutions and substantial computational effort
to test each candidate.

One potential solution to these problems would be to parti-
tion the observations into sets of smaller sub-demonstrations.
Then, each sub-demonstration could be attributed to a smaller
and less-complex class of reward functions. However, such a
method would require manual partitioning of the data into an
unknown number of groups, and inferring the reward function
corresponding to each group. A main contribution of this
section is to present an IRL algorithm that automates this
partitioning process using Bayesian nonparametric methods.
Instead of finding a single, complex reward function the
demonstrations are partitioned and each partition is explained
with a simple reward function. Note that the assumptions
and data format for this approach are substantially different
from subgoal discovery methods that learn when given a
reward function [17], partition trajectories based on continuous
dynamics without regard to changes in the policy [18], learn
multiple reward functions for different types of users [47, 48],
or IRL methods that find subgoals based on persistent rela-
tional factors [19].

In the subgoal learning method below, a generative model
is assumed in which these simple reward functions can be
interpreted as subgoals of the demonstrator. The generative
model utilizes a Chinese Restaurant Process (CRP) prior over
partitions so that the number of partitions (and thus subgoals)
need not be specified a priori and can be potentially infinite.

A. Subgoal Reward and Likelihood Functions

The following describes the Bayesian nonparametric sub-
goal IRL algorithm. We start with two basic definitions.

Definition 1. A state subgoal g is simply a single coordinate
g ∈ S of the MDP state space. Let c denote a positive
constant. The associated state subgoal reward function Rg(s)
is Rg(s) = cIg(s), where the indicator Ig(s) is one if s = g
and zero otherwise.

While the notion of a state subgoal and its associated reward
function may seem trivial, a more general feature subgoal will
be defined in the following sections to extend the algorithm
to a feature representation of the state space.

Definition 2. An agent in state si moving towards some state
subgoal g chooses an action ai with the following probability:

π(ai|si, g) = eαQ
∗(si,ai,Rg)(

∑
a

eαQ
∗(si,a,Rg))−1 (9)

Thus π defines a stochastic policy as in [43], and is
essentially our model of rationality for the demonstrating
agent. This is the same rationality model as in [26] and [49]
and aims to model goal directed behavior without placing
all probability on the optimal selection. In Bayesian terms,
it defines the likelihood of observed action ai when the agent
is in state si. The hyper-parameter α represents our degree of
confidence in the demonstrator’s ability to maximize reward.

B. Generative Model

The set of observed state-action pairs O defined by (5) are
assumed to be generated by the following model. The model
is based on the likelihood function (9), but adds a CRP parti-
tioning component. This addition reflects our basic assumption
that the demonstrations can be explained by partitioning the
data and finding a simple reward function for each partition.

An agent finds itself in state si. In analogy to the CRP
mixture described in Section II-C, the agent chooses which
partition ai should be added to, where each existing partition
j has its own associated subgoal gj . The agent can also
choose to assign ai to a new partition whose subgoal will be
drawn from the base distribution P (g) of possible subgoals.
The assignment variable zi is set to denote that the agent
has chosen partition zi, and thus subgoal gzi . As in (6),
P (zi|z1:i−1) = CRP (η, z1:i−1). Now that a partition (and
thus subgoal) has been selected for ai, the agent generates the
action according to the stochastic policy ai ∼ π(ai|si, gzi)
from (9). The joint probability over O, z, and g is given below,
since it will be needed to derive the conditional distributions
necessary for sampling:

P (O, z, g)=P (O|z, g)P (z, g)=P (O|z, g)P (z)P (g) (10)

=

N∏
i=1

P (oi|gzi)︸ ︷︷ ︸
likelihood

P (zi|z−i)︸ ︷︷ ︸
CRP

JN∏
j=1

P (gj)︸ ︷︷ ︸
prior

(11)

where (10) follows since subgoal parameters gj for each new
partition are drawn independently from prior P (g). As shown
in (11), there are three key elements to the joint probability.
The likelihood term is the probability of taking each action ai
from state si given the associated subgoal gzi , and is defined
in (9). The CRP term is the probability of each partition
assignment zi given by (6). The prior term is the probability
of each partition’s subgoal (JN is used to indicate the number
of partitions after observing N data-points). The subgoals are
drawn i.i.d. from discrete base distribution P (g) each time a
new partition is started, and thus have non-zero probability
given by P (gj).

The model assumes that oi is conditionally independent of
oj for i 6= j given gzi . Also, it can be verified that the CRP
partition probabilities P (zi|z−i) are exchangeable. Thus, the
model implies that the data O are exchangeable [45]. Note that
this is weaker than implying that the data are independent and
identically distributed (i.i.d.). The generative model instead
assumes that there is an underlying grouping structure that can
be exploited in order to decouple the data and make posterior
inference feasible.

The CRP partitioning allows for an unknown and potentially
infinite number of subgoals. By construction, the CRP has
“built-in” complexity control, i.e., its concentration hyper-
parameter η from (6) can be used to make a smaller number
of partitions more likely.

C. Inference

The generative model (11) has two sets of hidden parame-
ters, namely the partition assignments zi for each observation
oi, and the subgoals gj for each partition j. Thus the job of the
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IRL algorithm will be to infer the posterior over these hidden
variables, P (z, g|O). While both z and g are discrete, the
support of P (z, g|O) is combinatorially large (since z ranges
over the set of all possible partitions of N integers), so exact
inference of the posterior is not feasible. Instead, approximate
inference techniques must be used. Gibbs sampling [50] is in
the family of Markov chain Monte Carlo (MCMC) sampling
algorithms and is commonly used for approximate inference
of Bayesian nonparametric mixture models [51, 52].

Each Gibbs iteration involves sampling from the conditional
distributions of each hidden variable given all of the other
variables (i.e., sample one unknown at a time with all of
the others fixed). Thus the conditionals for each partition
assignment zi and subgoal gj must be derived. The conditional
for partition assignment zi is as follows:

P (zi|z−i, g,O) ∝ P (zi, oi | z−i,O−i) (12)
= P (zi|z−i, g,O−i)P (oi|zi, z−i, g,O−i) (13)
= P (zi|z−i) P (oi|zi, z−i, g,O−i) (14)
= P (zi|z−i)︸ ︷︷ ︸

CRP

P (oi|gzi)︸ ︷︷ ︸
likelihood

(15)

where (12) is the definition of conditional probability, (13)
applies the chain rule, (14) follows from the fact that assign-
ment zi depends only on the other assignments z−i, and (15)
follows from the fact that each oi depends only on its assigned
subgoal gzi . When sampling from (15), the exchangeability of
the data is utilized to treat zi as if it was the last point to be
added. Probabilities (15) are calculated with zi being assigned
to each existing partition, and for the case when zi starts a new
partition with subgoal drawn from the prior P (g). While the
number of partitions is potentially infinite, there will always
be a finite number of groups when the length of the data N
is finite, so this sampling step is always feasible.

Similarly, the conditional for each partition’s subgoal gj is:

P (gj |z,O) ∝ P (OIj |gj , z,O−Ij )P (gj |z,O−Ij ) (16)

=
∑
i∈Ij

P (oi|gzi) P (gj |z,O−Ij ) (17)

=
∑
i∈Ij

P (oi|gzi)︸ ︷︷ ︸
likelihood

P (gj)︸ ︷︷ ︸
prior

(18)

where (16) applies Bayes’ rule, (17) follows from the fact that
each oi depends only on its assigned subgoal gzi , and (18)
follows from the fact that the subgoal gj of each partition
is drawn i.i.d. from the prior over subgoals. The index set
Ij = {i : zi = j}.

Sampling from (18) depends on the form of the prior over
subgoals P (g). When the subgoals are assumed to take the
form of state subgoals (Definition 1), then P (g) is a discrete
distribution whose support is the set S of all states of the MDP.
The following simplifying assumption is proposed to increase
the efficiency of the sampling process.

Proposition 1. The prior P (g) is assumed to have support
only on the set SO of MDP states, where SO = {s ∈ S : s =
si for some observation oi = (si, ai)}.

This proposition assumes that the set of all possible subgoals

Algorithm 1 Bayesian nonparametric IRL

1: function BNIRL(MDP/R, Obs. O, Conf. α, Conc. η)
2: for each unique si ∈ O do
3: Compute V ∗(Rg), where g = si and Rg = cIg(s)
4: Sample initial subgoal g(0)

1 from prior P (g)

5: Assign all z(0)
i = 1

6: end for
7: while iteration t < tmax do
8: for each current subgoal g(t−1)

j do
9: Sample subgoal g(t)

j from (18)
10: end for
11: for each observation oi ∈ O do
12: for each current subgoal j(t) do
13: p(zi = j|z,O, Rj)← Prob. of subgoal j, (15)
14: end for
15: p(zi = k|z,O, Rk) ← Prob. of new subgoal

Rk drawn from P (g)

16: z
(t)
i ← Sample assignment from normalized

probabilities in lines 13–15
17: end for
18: end while
19: return samples z(1:tmax), g(1:tmax), discard burn-in/lag

ones
20: end function

is limited to only those states encountered by the demonstra-
tor. Intuitively it implies that during the demonstration, the
demonstrator achieves each of his subgoals. This is not the
same as assuming a perfect demonstrator (the expert is not
assumed to get to each subgoal optimally, just eventually).
Sampling of (18) now scales with the number of unique states
in the observation set O. While this proposition may seem
limiting, the simulation results in Section III-F indicate that it
does not affect performance compared to other IRL algorithms
and greatly reduces the required amount of computation. An
alternative to making the assumption in Proposition 1 would
be to provide a set of candidate reward functions as input to
the algorithm.

Algorithm 1 defines the proposed Bayesian nonparametric
inverse reinforcement learning method. The algorithm outputs
samples which form a Markov chain whose stationary distri-
bution is the posterior, so that sampled assignments z(T ) and
subgoals g(T ) converge to a sample from the true posterior
P (z, g|O) as T → ∞ [50, 53]. Note that instead of solving
for the MDP value function in each iteration (as is typical
with IRL algorithms), Algorithm 1 pre-computes all of the
necessary value functions. The number of required value
functions is upper bounded by the number of elements in the
support of the prior P (g). When we assume Proposition 1,
then the support of P (g) is limited to the set of unique states
in the observations O. Thus the required number of MDP
solutions scales with the size of the observed data set O, not
with the number of required iterations.

D. Convergence in Expected 0− 1 Loss

To demonstrate convergence, it is common in IRL to define
a loss function which in some way measures the difference
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between the demonstrator and the predictive output of the
algorithm [23, 25, 26]. In Bayesian nonparametric IRL, the
assignments z and subgoals g represent the hidden variables of
the demonstration that must be learned. Since these variables
are discrete, a 0− 1 loss function is suitable:

L [(z, g), (ẑ, ĝ)] =

{
1 if (ẑ, ĝ) = (z, g)
0 otherwise (19)

The loss function evaluates to 1 if the estimated parameters
(ẑ, ĝ) are exactly equal to the true parameters (z, g), and
0 otherwise. We would like to show that, for the Bayesian
nonparametric IRL algorithm (Algorithm 1), the expected
value of the loss function (19) given a set of observations O is
minimized as the number of iterations T increases. Theorem
1 establishes this.

Theorem 1. Assuming observations O are generated accord-
ing to the generative model defined by (11), the expected 0–1
loss defined by (19) is minimized by the empirical mode of the
samples (z(1:T ), g(1:T )) output by Algorithm 1 as the number
of iterations T →∞.

Proof. It can be verified that the maximum a poste-
riori (MAP) parameter values, defined here by (ẑ, ĝ) =
argmax(z,g) P (z, g|O), minimize the expected 0–1 loss de-
fined in (19) given the observations O (see [54]). By con-
struction, Algorithm 1 defines a Gibbs sampler whose samples
(z(1:T ), g(1:T )) converge to samples from the true posterior
P (z, g|O) so long as the Markov chain producing the sam-
ples is ergodic [50]. A sufficient condition for ergodicity of
the Markov chain in Gibbs sampling requires only that the
conditional probabilities used to generate samples are non-
zero [55]. For Algorithm 1, these conditionals are defined by
(15) and (18). Since clearly the likelihood (9) and CRP prior
(6) are always non-zero, then the conditional (15) is always
non-zero. Furthermore, the prior over subgoals P (g) is non-
zero for all possible g by assumption, so that (18) is non-zero
as well.

Thus the Markov chain is ergodic and the samples
(z(1:T ), g(1:T )) converge to samples from the true posterior
P (z, g|O) as T → ∞. By the strong law of large numbers,
the empirical mode of the samples, defined by (z̃, g̃) =
argmax(z(1:T ),g(1:T )) P (z, g|O) converges to the true mode
(ẑ, ĝ) as T →∞, and this is exactly the MAP estimate of the
parameters which was shown to minimize the 0–1 loss.

The rate at which the loss function decreases relies on
the rate the empirical sample mode(s) converges to the true
mode(s) of the posterior. This is a property of the approximate
inference algorithm and, as such, is beyond the scope of this
paper (convergence properties of the Gibbs sampler have been
studied, for instance in [56]). As will be seen empirically in
Section III-F, the number of iterations required for conver-
gence is typically similar to (or less than) that required for
other IRL methods.

E. Extension to General Linear Reward Functions

Linear combinations of state features are commonly used in
reinforcement learning to approximately represent the value
function in a lower-dimensional space [27, 43]. Formally, a

k-dimensional feature vector is a mapping Φ : S 7→ Rk.
Likewise, a discrete k-dimensional feature vector is a mapping
Φ : S 7→ Zk, where Z is the set of integers. Many of
the IRL algorithms listed in Section II-B assume that the
reward function can be represented as a linear combination
of features. We extend Algorithm 1 to accommodate discrete
feature vectors by defining a feature subgoal in analogy to the
state subgoal from Definition 1.

Definition 3. Given a k-dimensional discrete feature vector
Φ, a feature subgoal g(f) is the set of states in S which map
to the coordinate f in the feature space. Formally, g(f) =
{s ∈ S : Φ(s) = f} where f ∈ Zk. The associated feature
subgoal reward function is defined as Rg(f)(s) = cIg(f)(s),
where c is a positive constant and the indicator Ig(f)(s) is
one if s ∈ g(f) and is zero otherwise.

From this definition it can be seen that a state subgoal is
simply a specific instance of a feature subgoal, where the
features are binary indicators for each state in S. Algorithm 1
runs exactly as before, with the only difference being that the
support of the prior over reward functions P (g) is now defined
as the set of unique feature coordinates induced by mapping S
through Φ. Proposition 1 is also still valid should we wish to
again limit the set of possible subgoals to only those feature
coordinates in the observed demonstrations, Φ(s1:N ). Finally,
feature subgoals do not modify any of the assumptions of
Theorem 1, thus convergence is still attained in 0− 1 loss.

F. Simulation Results

Simulation results are given for three test cases. All three
use a 20×20 Grid World MDP (total of 400 states) with walls.
Note that while this is a relatively simple MDP, it is similar
in size and nature to experiments done in the seminal papers
of each of the compared algorithms. Also, the intent of the
experiments is to compare basic properties of the algorithms
in nominal situations (as opposed to finding the limits of each).

The agent can move in all eight directions or choose to
stay. Transitions are noisy, with probability 0.7 of moving
in the chosen direction and probability 0.3 of moving in an
adjacent direction. The discount factor γ = 0.99, and value
iteration is used to find the optimal value function for all
of the IRL algorithms tested. The demonstrator in each case
makes optimal decisions based on the true reward function.
While this is not required for Bayesian nonparametric IRL, it
is an assumption of one of the other algorithms tested [11].
In all cases, the 0− 1 policy loss function is used to measure
performance. The 0− 1 policy loss simply counts the number
of times that the learned policy (i.e., the optimal actions given
the learned reward function) does not match the demonstrator
over the set of observed state-action pairs.

1) Grid World Example: The first example uses the state-
subgoal Bayesian nonparametric IRL algorithm. The prior over
subgoal locations is chosen to be uniform over states visited
by the demonstrator (as in Proposition 1). The demonstra-
tor chooses optimal actions towards each of three subgoals
(x, y) = {(10, 12), (2, 17), (2, 2)}, where the next subgoal
is chosen only after arrival at the current one. Figure 1
shows the state-action pairs of the demonstrator (left), the
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Fig. 1: Observed state-action pairs for simple grid world
example (left). Arrows indicate direction of the chosen action
and X’s indicate choosing the “stay” action. 0− 1 policy loss
for Bayesian nonparametric IRL (middle). Posterior mode of
subgoals and partition assignments (right). Colored arrows de-
note assignments to the corresponding colored boxed subgoals.
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Fig. 2: Observed state-action pairs for grid world comparison
example (left). 0 − 1 policy loss comparison for various IRL
algorithms (right).

0 − 1 policy loss averaged over 25 runs (center), and the
posterior mode of subgoals and partition assignments (colored
arrows denote assignments to the corresponding colored boxed
subgoals) after 100 iterations (right). The algorithm reaches a
minimum in loss after roughly 40 iterations, and the mode of
the posterior subgoal locations converges to the correct coordi-
nates. We note that while the subgoal locations have correctly
converged after 100 iterations, the partition assignments for
each state-action pair have not yet converged for actions whose
subgoal is somewhat ambiguous, mainly because CRP makes
no assumptions on the temporal relationship between subgoals.

2) Grid World with Features Comparison: In the next test
case, Bayesian nonparametric IRL (for both state- and feature-
subgoals) is compared to three other IRL algorithms, using
the same Grid World setup as in Section III-F1: “Abbeel” IRL
using the quadratic program variant [11], Maximum Margin
Planning using a loss function that is non-zero at states not
visited by the demonstrator [23], and Bayesian IRL [26]. A
set of six features Φ1:6(s) are used, where feature k has an
associated state sΦk

. The value of feature k at state s is
simply the Manhattan distance (1-norm) from s to sΦk

; i.e.,
Φk(s) = ||s − sΦk

||1. The true reward function is defined
as R(s) = wTΦ(s) where w is a vector of randomly-chosen
weights. The observations consist of five demonstrations start-
ing at state (x, y) = (15, 1), each having 15 actions which
follow the optimal policy corresponding to the true reward
function. Note that this dataset satisfies the assumptions of the
three compared algorithms, though it does not strictly follow
the generative process of Bayesian nonparametric IRL. Figure
2 shows the state-action pairs of the demonstrator (left) and
the 0−1 policy loss, averaged over 25 runs versus iteration for
each algorithm (right). All but Bayesian IRL achieve conver-
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Fig. 3: Observed state-action pairs for grid world loop example
(top left). Comparison of 0 − 1 Policy loss for various IRL
algorithms (top right). Posterior mode of subgoals and partition
assignments (bottom).

gence to the same minimum in policy loss by 20 iterations, and
Bayesian IRL converges at roughly 100 iterations (not shown).
Even though the assumptions of Bayesian nonparametric IRL
were not strictly satisfied (the assumed model (11) did not
generate the data), both the state- and feature-subgoal variants
of the algorithm achieved performance comparable to the other
IRL methods.

3) Grid World with Loop Comparison: In the final
experiment, five demonstrations are generated using sub-
goals as in Section III-F1. The demonstrator starts in state
(x, y) = (10, 1), and proceeds to subgoals (x, y) =
{(19, 9), (10, 17), (2, 9), (10, 1)}. Distance features (as in Sec-
tion III-F2) are placed at each of the four subgoal locations.
Figure 3 (left) shows the observed state-action pairs. This
dataset clearly violates the assumptions of all three of the
compared algorithms, since more than one reward function is
used to generate the state-action pairs. However, the assump-
tions are violated in a reasonable way. The data resemble a
common robotics scenario in which an agent leaves an initial
state, perform some tasks, and then returns to the same initial
state.

Figure 3 (center) shows that the three compared algorithms,
as expected, do not converge in policy loss. Both Bayesian
nonparametric algorithms, however, perform almost exactly
as before and the mode posterior subgoal locations converge
to the four true subgoals (Figure 3 right). Again, the three
compared algorithms would have worked properly if the data
had been generated by a single reward function, but such a
reward function would have to be significantly more complex
(i.e., by including temporal elements). Bayesian nonparametric
IRL is able to explain the demonstrations without modification
or added complexity.

G. Comparison of Computational Complexities

BNIRL has two stages of computation:
• In the initialization stage, optimal action-value functions

are computed for each candidate reward state, i.e., for each
unique demonstration state by Proposition 1. Since many
methods exist for finding optimal action-value functions [27,
43], the computational complexity of the operation is denoted
as O(MDP).
• In the sampling stage, each iteration requires assigning

observations to a subgoal reward. The complexity of each
sampling iteration is O(Nobs η logNobs), where Nobs is the
number of observed state-action pairs in the demonstration,
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η is the CRP concentration parameter, and η logNobs is the
expected number of active subgoals in the CRP.

The overall complexities of each stage are not directly
comparable since results on the number of iterations required
for Gibbs sampling convergence are not well established [56].
However, in practice the first stage (calculating optimal action-
value functions) dominates the complexity of the overall
algorithm.

As outlined below, other IRL algorithms calculate optimal
action value functions once per iteration. Since BNIRL calcu-
lates the optimal action value function at a maximum of once
per demonstration state, a rough complexity comparison can
be made by comparing the number of times the MDP must
be solved for each algorithm. The following summarizes a
complexity analysis given in each respective original work:

1) Abbeel IRL [57]: An upper bound on the number of
iterations required to guarantee feature count matching error
ε
4 is given as 48k

(1−γ)2ε2 , where k is the dimension of the state
space and γ is the MDP discount factor. Each iteration requires
computation of an optimal action-value function.

2) Bayesian IRL [26]: The number of iterations required
is related to the mixing time of the MCMC method used. The
chain is said to “rapidly mix” in O(n2d2α2e2β log 1

ε ) sampling
iterations, where n is the dimension of the state space, d is a
bound on the reward magnitude, and α, β and ε are parameters.
Each sampling iteration requires computation of an optimal
action-value function.

3) MaxMargin IRL [23]: While no analytical expression
is given, convergence is said to be sub-linear for a diminishing
step-size rule which achieves a minimum in error under a
strong convexity assumption. As in the above two algorithms,
each iteration requires computation of an optimal value func-
tion.

Thus, the effective complexity of these algorithms (number
of optimal value functions that must be computed) scales with
the number of iterations needed for convergence. As shown
above, the number of required iterations can depend on many
parameters of each algorithm. In BNIRL, the effective com-
plexity is upper-bounded by the number of unique states in the
demonstration, which highlights a fundamental computational
difference of BNIRL versus previous methods.

To give an empirical sense of computation times for the ex-
ample in Section III-F2, Table I compares average initialization
and per-iteration run-times for each algorithm. These are given
only to show general trends, as the Matlab implementations of
the algorithms were not optimized for efficiency. The initial-
ization of BNIRL takes much longer than the others, since
during this period the algorithm is pre-computing optimal
value functions for each of the possible subgoal locations (i.e.,
each of the states encountered by the demonstrator). However,
the BNIRL per-iteration time is roughly an order of magnitude
less than the others, since they must re-compute an optimal
value function each iteration.

The example which generated the data in Table I was
selected for BNIRL to perform comparably in overall runtime
to Abbeel IRL such that a fair comparison of initialization
versus per-iteration runtimes can be made. This selection high-
lights the fundamental performance tradeoff between BNIRL

TABLE I: Run-time comparison for various IRL algorithms.

Initialize Per-iter. Iter. to Total
(sec) (sec) Converge (sec)

BNIRL 15.3 0.21 10 17.4
Abbeel-IRL 0.42 1.65 10 16.9
MaxMargin-IRL 0.41 1.16 20 23.6
Bayesian-IRL 0.56 3.27 105 344

and the other IRL methods compared. By Proposition 1,
BNIRL limits the candidate subgoals to the states observed
in the demonstration. This proposition limits the potential
complexity of the reward representation, but it also places an
upper-bound on the number of value functions that must be
calculated. In the compared IRL methods, the reward function
is parametrized and the algorithms iteratively search over a
continuous parameter space, computing a new value function
at each iteration. In this case, no assumption is made about the
number of candidate reward functions (other than the reward
parametrization itself) at the cost of an asymptotic number of
value functions to be computed.

As a result of this fundamental difference in algorithmic
structure, there are scenarios when BNIRL will perform com-
putationally faster than the other methods, and vice versa. In
cases where the demonstration set is small and there are a
large number of demonstrator subgoals, BNIRL will generally
execute faster since its computation scales with the number
of unique demonstration states and it has the ability to learn
multiple subgoal reward functions. The other IRL methods will
generally execute slower in this case, since they must search
for a more complex representation. In cases where there is a
large amount of demonstration data and there are not multiple
subgoals, BNIRL will generally execute slower since it must
find a value function for each unique demonstration state. The
other IRL will generally execute faster in this case, since their
computation does not scale with demonstration size and a less-
complex reward representation is required.

H. Limitations of the Learned Subgoal Reward Function
The use of state and feature subgoal reward functions

is limiting in that the resulting reward learning process is
similar to trajectory segmentation. This is a direct result of
the proposed set of candidate rewards, which is given to be
set of states (or features) encountered in the trajectory. Even
so, as opposed to trajectory segmentation or policy learning
methods, BNIRL is a true reward learning method whereby
reward functions are posed and tested. While relatively simple
subgoal reward functions are presented here, more complex
classes of reward function can be learned using BNIRL. The
main requirement for a new class of reward functions is that
a set of candidate rewards be tractably posed. In this case,
the set of candidate rewards comes from states (or features)
encountered in the demonstration. However, any method which
is able to take demonstration trajectories and generate a set
of candidate reward functions is applicable. Extending the
algorithm to learn more general classes of reward functions
is an area of potential future work.

Another limitation of the subgoals (or, more generally,
reward functions) generated by BNIRL is that the temporal
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Fig. 4: Progression of real-time dynamic programming [40]
sample states for the Grid World example. The algorithm
starts with the initial set (top) based on the demonstration
set (denoted by arrows), and uses greedy simulations to
progressively expand the set of sample states (middle and
bottom) over which value iteration is performed.

sequence is not explicitly learned. Thus, using the learned
reward functions to re-create demonstration sequences requires
additional post-processing by a planning algorithm. While
BNIRL is purely a reward learning algorithm, planning and
control algorithms can be applied which utilize the learned
reward functions to create macro-actions to achieve an overall
goal. As an example, Section V-F demonstrates how learned
subgoals can be utilized in the MDP option framework for
overall task planning. The experimental results in Section VI-B
demonstrate the execution of the learned options, though more
complex sequencing and planning using options is beyond the
scope of the paper and left as future work.

IV. APPROXIMATIONS TO THE DEMONSTRATOR
LIKELIHOOD

This section presents simulation results which apply (i)
Real-time Dynamic Programming (RTDP) and (ii) “action
comparison” as two action likelihood approximation methods
to handle challenging problems with large and continuous
domains. A detailed explanation and implementation of these
methods can be found in [58] and [42].

As an example of using RTDP in BNIRL, consider the Grid
World domain shown in Figure 4. The agent can move in all
eight directions or choose to stay. Transitions are noisy with
probability 0.7 of moving in the chosen direction, and the
discount factor γ = 0.99. The demonstration set O is denoted
by arrows, indicating actions chosen from each state. The
initial set of RTDP sample states S̃ is chosen to be the set of
states encountered in the demonstration O, as well as any other
states reachable in one transition. Value iteration is performed
on these states for an example candidate reward function, and
the resulting value function is shown in Figure 4a. A random
state s ∈ Oi is then chosen, and a greedy simulation is
performed. All states encountered during the simulation (as
well as any other states reachable in one transition) are added
to sample states denoted by S̃ [58] . The cycle repeats, and
Figures 4b and 4c shows the progression of sample states and
corresponding value functions. The process terminates when
the greedy simulation fails to add any new states to S̃.

In order to test the scalability of the RTDP Q∗ approx-
imation, the CPU run-times of five different methods are
compared: BNIRL using full value iteration, Abbeel IRL (from
[11], a representative conventional IRL method) using full
value iteration, BNIRL using RTDP, Abbeel IRL using RTDP,
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Fig. 5: Comparison of average CPU runtimes for various IRL
algorithms for the Grid World example (left), along with the
average corresponding 0-1 policy loss (right). Both plots use
a log-log scale, and averages were take over 30 samples.

and BNIRL using parallelized RTDP. In the parallel BNIRL
case, the pre-computation of the required approximate value
functions is done on a cluster of 25 computing cores. The
ability to compute value functions in parallel is a feature of the
BNIRL algorithm since the set of reward function candidates
is guaranteed to be finite by Proposition 1. Abbeel IRL (as
well as other conventional IRL methods [11, 15, 23–26])
cannot be parallelized due to the fact that a new value function
must be computed at each sequential iteration. Computation is
performed on a Pentium i7 3.4GHz processor with 8GB RAM.
Implementations of each algorithm have not been optimized
for speed, but computation time results are still meaningful
for evaluating order-of-magnitude trends.

Figure 5a shows average CPU run-times of each method
(lower is better) for Grid World domains ranging from 102 to
106 states. For each domain size, demonstrations are generated
with a greedy controller starting and ending at randomly-
chosen states. As can be seen, both BNIRL and Abbeel IRL
using full value iteration become extremely slow for problems
larger than 103 states (data points for 106 states are not
included, as they would take weeks to compute). Methods
using RTDP are slower for small problem sizes (this is due
to the extra time needed for simulations to expand the set
of sample states). However, beyond problems with 103 states,
RTDP methods are roughly an order of magnitude faster than
full value iteration. Finally, the parallelized BNIRL method
using RTDP shows significantly faster performance than the
non-parallelized version and Abbeel IRL with RTDP, because
25 computing cores can be used in parallel to calculate the
necessary value functions, which is unique to BNIRL.

To ensure that the RTDP Q∗ approximation does not affect
the quality of the learned reward function, Figure 5b shows the
average 0-1 policy loss of each algorithm (lower is better) for
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each grid size. The 0-1 policy loss simply counts the number of
times that the learned policy (i.e., the optimal actions given the
learned reward function) does not match the demonstrator over
the set of observed state-action pairs. As can be seen, using
RTDP to approximate Q∗ does not have an adverse effect
on reward learning performance, as the loss for the RTDP
methods is only slightly higher (no more than 4% in all cases)
than the full value iteration methods.

V. GAUSSIAN PROCESS SUBGOAL REWARD LEARNING

The Bayesian nonparametric inverse reinforcement learning
(BNIRL) method developed in Section III is generalized in this
section to handle fully continuous demonstration domains by
using Gaussian process reward representations and Gaussian
process dynamic programming [59] as a method of finding
approximate action-value functions. Further, the option MDP
(skills) framework [16] enables execution of the learned
behaviors by the robotic system and provides a principled
basis for future learning and skill refinement. In Section
VI, experimental results are given for a robotic car domain,
identifying maneuvering skills such as drifting turns, executing
the learned skills autonomously, and providing a method for
quantifying the relative skill level of the original demonstrator.

A. Gaussian Process Subgoal Reward Learning Algorithm

BNIRL algorithm (Algorithm 1) learns multiple reward
functions, but it is only applicable to discrete domains. The
method was extended to a continuous domain in [58], [42],
but that extension relies on access to an existing closed-
loop controller, which may not be available in general. This
section presents the GP subgoal reward learning (GPSRL)
algorithm, which learns GP subgoal reward representations
from unsegmented, continuous demonstration. The GPSRL
algorithm assumes two key inputs:

1) Demonstration set of state-action pairs O={(si, ai)}Ni=1.
The continuous demonstration must be measured and down-
sampled to the desired time interval. This is not the same
as discretization of the continuous state space, it is instead
sampling a continuous trajectory at finite time intervals.

2) A state transition function, s′ = f(s, a), which models
the dynamics that generated the demonstration. This is not a
model of the demonstrator, just a model of the state transition
given an action. If no model is available, many system identifi-
cation techniques exist which can learn a transition model [60].
The full GPSRL method is shown in Algorithm 2, comprising
three main stages that are explained in the subsections below.
First, the set of candidate subgoal rewards is constructed (lines
2-7). Next, Gaussian process dynamic programming is used
to approximate the optimal action-value function Q∗ for each
candidate subgoal in parallel (lines 8-10). Finally, approximate
posterior inference is done using Gibbs sampling (lines 11-19).

B. Subgoal Reward Representation

Since the demonstration space is assumed to be continuous,
a subgoal reward at a single coordinate of the state space (as
in BNIRL [41]) is ill-defined. A subgoal reward representation
with broader support is achieved using Gaussian processes
(GPs). Each subgoal reward is simply a GP with one training

Algorithm 2 Gaussian Process Subgoal Reward Learning

1: Rsg,Ssupp ← {}
2: for each demonstration state si ∈ O do
3: if ||si − s|| > ε ∀s ∈ Ssupp then
4: Ssupp ← {Ssupp, si} . Build set of support states

for GPDP
5: Rsg ← {Rsg, GP (si, r, kg)} . Build set of

candidate subgoals
6: end if
7: end for
8: for each candidate subgoal Rj ∈ Rsg (in parallel) do
9: Q̂∗(Rj)← GPDP(Ssupp, Rj , f(s′|s, a)) . Gaussian

process DP [59]
10: end for
11: while iteration t < Niter do . Gibbs sampling of subgoal

posterior assignments

12: for each observation oi ∈ O do
13: for each current partition j(t) do
14: p(zi = j|z,O, Rj)← Prob. of partition j Eq.(22)
15: end for
16: p(zi = k|z,O, Rk)← Probability of new partition

with Rk drawn from Rsg

17: z
(t)
i ← Sample assignment from normalized

probabilities in lines 13–16
18: end for
19: end while
20: return mode of samples z(1:Niter) & subgoal rewards Rj

point, GP (sg, r, kg) , where sg is the subgoal state, r is a
positive scalar reward (the magnitude of which is not critical
to the algorithm), and kg(·, ·) is a kernel function. The GP
spreads the reward to the neighborhood around sg , according
to the kernel function kg .

As in BNIRL, a key assumption of GPSRL is that the
set of possible subgoals comes from the demonstration itself,
avoiding a priori discretization of the state space to generate
a candidate subgoal reward set. The set of possible rewards
Rsg is thus the set of subgoal rewards corresponding to the
sampled demonstration:

Rsg = { GP (s, r, kg), ∀s ∈ O } (20)

To avoid redundant subgoals, the set is built incrementally such
that a new subgoal is not added if it is ε-close to a subgoal
already in Rsg (lines 2-7 of Algorithm 2). The parameter ε is
thus chosen to scale the size of the candidate set of subgoal
rewards, and correspondingly the computational requirements
of the GPSRL algorithm.

C. Action Likelihood

A softmax likelihood based on the optimal Q∗ function is
used similar to (9):

p(Oi|Rj) = p(ai|si, Rj) ∝ exp ( αQ∗(si, ai|Rj) ) (21)

The parameter α again represents our confidence in the
demonstrator’s ability to maximize reward, and further con-
siderations for its selection are given in Section VI-B1.
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D. Gaussian Process Dynamic Programming

In order to compute the likelihood value in (21), the optimal
Q∗ function is necessary. In general, calculating the optimal
value function for discrete systems is computationally difficult,
and even more so for continuous systems. This necessitates
the use of an approximate method, and Gaussian process
dynamic programming (GPDP) [59] is chosen for this pur-
pose. GPDP generalizes dynamic programming to continuous
domains by representing the value and action-value functions
with Gaussian processes. Thus, the algorithm requires only a
set of support states to train the value function GPs, instead of
requiring discretization or feature mapping of the state space.

GPDP is particularly well-suited for the task of approximat-
ing the Q∗ function in (21) for several reasons. Foremost, the
support points used to learn the value function in GPDP come
directly from the demonstration, i.e., Ssupport = {s : s ∈ O}.
This effectively focuses computational effort only on areas
of the state space that are relevant to the reward learning
task. Also, the Gaussian process subgoal reward representation
from Section V-B is naturally compatible with the GPDP
framework. Finally, the output of the GPDP algorithm enables
evaluation of the approximated optimal action-value function
Q̂∗ at any arbitrary state s via evaluation of a GP mean,
allowing for efficient calculation of the likelihood (21). Note
that the max in the denominator of (21) must be found
numerically by evaluating Q̂∗ at several test actions, which
in practice are distributed uniformly between action bounds.

The computational complexity of Algorithm 2 is dominated
by the GPDP calculation of Q̂∗(Rj) for each candidate sub-
goal reward Rj ∈ Rsg (lines 8-10). However, this is easily
parallelized on a computing cluster allowing for substantial
savings in computation time.

E. Bayesian Nonparametric Mixture Model and Subgoal Pos-
terior Inference

The GPSRL algorithm learns multiple subgoals reward
functions from the demonstration set. To avoid the need to
pre-specify or constrain the number of learned subgoals, a
Bayesian nonparametric model is used. In the model, each
state-action pair in the demonstration O is assigned to a
partition. The vector z ∈ R|O| stores partition assignments, so
that zi = j implies that observation Oi = (si, ai) is assigned
to partition j. Each partition has an associated subgoal from
the set of candidate GP subgoal reward functions Rsg . The
posterior probability of assignment zi to partition j is defined
as follows (see [41] for a more detailed derivation):

p(zi = j|z,O, Rj) ∝ p(zi = j|z−i)︸ ︷︷ ︸
CRP prior (6)

p(Oi|Rj)︸ ︷︷ ︸
action likelihood (21)

(22)

where Rj is the GP subgoal reward corresponding to partition
j. The CRP prior, which encourages clustering into large
partitions, is defined by (6). The action likelihood term, which
encourages similarity within partitions, is defined by (21).

As in the BNIRL algorithm, Gibbs sampling is used for
approximate inference of the Bayesian nonparametric mixture
model. The Gibbs sampling procedure comprises lines 11-19
of Algorithm 2.

F. Converting Learned Subgoals to MDP Options
Once subgoal rewards are learned using GPSRL they can

be easily cast in the options MDP framework [16]. As sum-
marized in Section II-A, an option is defined by the initiation
set Io, the option policy πo, and the terminating condition
βo. For a learned subgoal reward Rj centered at subgoal
state sg , the initiation set is defined as those states which
are ε-close (where ε is the parameter from Section V-B) to
a demonstration state which is assigned to subgoal Rj by the
GPSRL sampling step. Since the approximate optimal action
value function Q̂∗(s, a|Rj) for subgoal reward Rj is already
calculated in the GPDP step of GPSRL, the option policy πo
is simply the corresponding optimal policy. Finally, the set of
terminating states is simply the set of states which are ε-close
to sg:

Io(Rj) , {s ∈ S : ||s− si|| < ε, si ∈ O, zi = j} (23)

πo(s|Rj) , argmax
a

Q̂∗(s, a|Rj) (24)

βo(Rj) , {s ∈ S : ||s− sg|| < ε} (25)

It is worth noting that after identifying subgoals (or more
general reward functions, depending on the application), an
additional planner is necessary to reproduce the plan over
options. The conversion of learned GPSRL subgoals into MDP
options is validated experimentally in Section VI, in which
RC car driving maneuvers are learned from demonstration and
executed by the autonomous system.

VI. EXPERIMENTAL RESULTS

The broad focus of this paper is to enable scalable reward
learning from demonstration for real-world robotic systems.
This section presents experimental results that validate the
use of BNIRL and GPSRL on experimental robotic hardware
systems.

A. Learning Quadrotor Flight Maneuvers from Hand-Held
Demonstration with Action Comparison

To test the action comparison likelihood approximation
described in [42, 58], BNIRL is used to learn quadrotor
flight maneuvers from a hand-held demonstration. First, the
maneuver is demonstrated by motioning with a disabled
quadrotor helicopter (Figure 6a) while the pose and velocities
of the quadrotor are tracked and recorded by the motion
capture system down-sampled to 20Hz (Figure 6b). In this
case, the state vector is 2-dimensional (Y-Z) position and
the components of the action vector are the corresponding
velocities. For the 2-D quadrotor model in [42, 58], the
BNIRL algorithm is used to generate an approximate posterior
distribution over the demonstrator’s subgoals. Figure 6c shows
the mode of the sampled posterior, which converges to four
subgoals, one at at each corner of the demonstrated trajectory.
The subgoals are then sent as waypoints to an autonomous
quadrotor which executes them in actual flight, thus recreating
the demonstrated trajectory. Flight tests are conducted in
the RAVEN indoor testbed [61] using the flight control law
described in [62]. Figure 6d plots the hand-held trajectory
against the autonomous flight, showing a qualitative match
between the demonstration and the resulting learned behavior.
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Fig. 6: Human demonstrator motions with a disabled quadrotor (a) while a motion capture system records and down-samples
demonstration (b). BNIRL algorithm with action comparison likelihood converges to a mode posterior with four subgoals, one
at each corner of the demonstrated trajectory (c). Finally, an autonomous quadrotor takes the subgoals as waypoints and flies
the learned trajectory (d).

To demonstrate the ability of BNIRL to handle cyclic,
repetitive demonstrations, Figure 7 shows a cluttered trajectory
where the demonstrator moves randomly between the four
corners of a square. Overlaid are the four subgoals of the
converged posterior, which correctly identify the four key
subgoals inherent in the demonstration.

Figure 8a shows another example in which the demonstrated
trajectory is a flip. The BNIRL algorithm using action compar-
ison likelihood converges to posterior subgoals at the bottom
and the top of the trajectory, with the quadrotor being inverted
at the top (see Figure 8b). The subgoal waypoints are executed
by the autonomous flight controller and the actual flight path is
overlaid on Figure 8a, again showing the qualitative matching
between demonstrated and learned behavior.

The experimental results highlight the ability of the BNIRL
algorithm to learn the reward effectively even when the
demonstration domain dynamics are different than the dynam-
ics of the autonomous system. The demonstration in this case
(hand-held motions) is not necessarily dynamically feasible for
the autonomous system, yet the algorithm is still able to learn
rewards that generate qualitatively similar behavior. Finally,
note that the BNIRL sampling process for the three examples
above takes roughly three seconds to converge to the posterior
mode on an Intel i7 2.4GHz laptop using an unoptimized
implementation. This is due to the fact that evaluation of the
closed-loop control action is fast, making BNIRL suitable for
online reward learning (see [58], [42] for details).

B. Learning Driving Maneuvers from Demonstration with
GPSRL

This section presents experimental results demonstrating
the ability of GPSRL to learn driving maneuvers for an RC
car. Demonstrating and learning such maneuvers is typically
challenging due to highly non-linear tire slip dynamics which
are difficult to model or predict. The demonstration state vector
consists of the body velocities ẋb and ẏb, heading rate ψ̇,
and wheel speed ω. Learned subgoals can thus be specified
as a GP trained in this 4-dimensional state space. Actions
consist of the steer angle δ and commanded wheel speed ωc
(motor torque to the drive wheels is then set by an inner-
loop PI controller on wheel speed). Figure 9 shows the RC
car used in the experiment along with a diagram of states
and actions. Demonstrations are performed via manual remote-
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Fig. 7: A cluttered trajectory in which the demonstrator moves
randomly between the four corners of a square is shown in
black. The BNIRL posterior mode is shown in red, which
consists of four subgoals, one at each corner of the square as
expected.
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Fig. 8: Hand-held demonstrated quadrotor flip shown in black
(a). BNIRL posterior mode converges to two subgoals (bottom
and top (inverted) of the flip trajectory) (b). Autonomous
quadrotor uses subgoals as waypoints and flies the learned
trajectory, (a) in red.

controlled operation with a joystick. States ẋb, ẏb and ψ̇ are
measured with a motion capture system sampled at 100Hz, and
wheel speed ω is measured onboard with an optical encoder
and transmitted wirelessly at 100Hz. The transition model f
required for GPDP (Section V-D) is taken from a basic model
of car dynamics with wheel slip [63], with model parameters
identified from test data.

The squared exponential kernel kSE(x,x′) is used for all
GPs, with parameters optimized using gradient ascent to local
maxima of the log evidence each time a new GP is created or
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modified. The CRP concentration parameter η = 0.001 is used
for all experiments. While detailed discussion of selecting this
parameter is omitted, empirical findings indicate that subgoal
learning results are not particularly sensitive to η.

Figure 10 (top) shows a 30-second demonstration which
includes straight-line driving, standard left/right turns, and
advanced drifting turns. The GPSRL algorithm is applied with
α = 25, and convergence to six learned subgoal rewards is
attained within roughly 200 sampling iterations (corresponding
to roughly 6 minutes of wall-clock time on an Intel i7
2.4GHz laptop using an unoptimized implementation). Figure
10 (bottom) shows the six subgoal state locations, where
arrows represent the body velocities ẋb and ẏb, the rotation
of the rectangle represents heading rate ψ̇, and wheel speed ω
is omitted for clarity.

The learned subgoals correctly identify the six basic maneu-
vers from the demonstration: stop, drive straight, left turn, right
turn, left drifting turn, and right drifting turn. The trajectory
is color-coded to show the partition assignments of the demo
states to the six learned subgoals (Figure 10, left). Note that the
Bayesian nonparametric model from Section V-E is not biased
towards clustering contiguous trajectory segments, yet the
posterior mode assignments shows that contiguous segments
are indeed clustered into appropriate subgoals, as would be
expected.

To explore the behavior of GPSRL as more demonstration
data is added, ten more 30-second human-controlled demon-
strations were recorded with the demonstrator instructed to
include the same types of behavior as in Figure 10. Figure 11
shows the number of subgoals learned as each new demon-
stration is added, averaged over 25 trials, with the confidence
parameter again set to α = 25. The number of learned
subgoals does not increase arbitrarily with more demonstration
data, and stays within two standard deviations of six learned
subgoals from the single demonstration case.

1) Confidence Parameter Selection and Expertise Determi-
nation: The confidence parameter α has a direct effect on the
posterior distribution (22) and thus the number of subgoals
learned from a given demonstration. Since α represents the
expected degree to which the demonstrator is able to maximize
reward, there is thus no analytical method for choosing the
parameter. Even so, small or large values of alpha produce
consistent trends in the number of learned subgoals. In the
limit as α → 0, the demonstrator is assumed to choose
arbitrary actions that do not attempt to maximize reward.
This leads to the discovery of a single partition since the
entire demonstration can be explained as noisy or suboptimal
actions towards any arbitrary subgoal. In the limit as α→∞,
the demonstrator is assumed perfectly optimal. This leads
to a larger number of learned subgoals since any noise or
mistakes present in the demonstrated actions will be treated
as completely intentional, and the resultant state will likely be
added as a subgoal.

Figure 12 (left) shows a demonstration which consists of a
mixture of right-handed turns of three distinct turning radii.
This demonstration was intentionally created so that there are
three unambiguously “true” subgoals. Figure 12 (right) shows
the number of learned subgoals for a logarithmic sweep of
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� �
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�

Fig. 9: RC car used for experimental results (left) with
optical encoder, battery, radio modem, and reflective markers
for motion capture. Diagram of car state (right) with body
velocities ẋb and ẏb, heading rate ψ̇, wheel speed ω, and
steering command δ.

Fig. 10: Thirty-second manually-controlled demonstration tra-
jectory (top) starting in upper-left and ending in lower-middle.
Six learned subgoal state locations (bottom), where arrows
represent the body velocities ẋb and ẏb, the rotation of the
rectangle represents the heading rate ψ̇, and the wheel speed
ω is omitted for clarity. Learned subgoal labels (“Left turn”,
etc.) added manually.
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Fig. 11: Number of subgoals learned versus total length of
demonstration data sampled, averaged over 25 trials. The
number of learned subgoals does not increase arbitrarily with
more demonstration data, and stays within 2-σ of the 6 learned
subgoals from a single demonstration.

α averaged over 50 trials, with 1500 sampling iterations per
trial. As expected, there is a range of α < 10 through which
only one subgoal is discovered. For 10 < α < 60 the number
of subgoals discovered is within two standard deviations of
the true value (three), showing that there is a relatively large
range of suitable parameter settings. For α > 60 the algorithm
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Fig. 12: Demonstration with three distinct right-turning radii
(top). Number of learned subgoals (50-trial average) versus the
confidence parameter value α (bottom). The trajectory is color-
coded with partition labellings for α = 25, showing correct
subgoal identification for the three turning radii.

discovers more subgoals as expected, since noisy state-actions
are interpreted as intentional.

The confidence parameter can also be used in the opposite
way to quantify the level of “expertise” of the demonstrator.
Consider instead that the demonstration in Figure 12 came
from a demonstrator who was instructed to execute the same
turn many times. If this were the case, the different turning
radii would then be attributed to the sub-optimal execution
of the maneuver. The numerical level of expertise of the
demonstrator could then be found by sweeping the value of
α until more than one subgoal is consistently discovered –
in this case α = 10. Aside from serving as an indicator of
expertise, this value of α could then be used as a starting
point to interpret future demonstrations which may contain
more than one subgoal.

2) Autonomous Execution of Learned Subgoals: Once sub-
goal rewards are learned, they can be converted to options
as presented in Section V-F. Figure 13 shows a comparison
of demonstrated maneuvers (from the original demonstration
in Section III-F1) to the autonomous execution of the corre-
sponding learned subgoal option for three of the six learned
subgoals (colors correspond to Figure 10).

The autonomously executed maneuvers match the original
demonstration closely, even though no additional learning was
performed beyond the GPDP step in Algorithm 2. Also, each
maneuver was demonstrated once in the single trajectory from
Figure 10 from which the subgoals were learned and executed.
These results demonstrate the ability of GPSRL to learn
meaningful subgoals and execute corresponding autonomous
policies from a single, unsegmented demonstration without
user intervention or manual partitioning. The only necessary
input to the algorithm (aside from parameter settings and the
demonstration itself) is the state transition function described
in Section V-A.
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Fig. 13: Comparison of demonstrated maneuvers (from Figure
10, shown here in black) to the autonomous execution of the
corresponding learned subgoal options (colored to correspond
with the subgoals in Figure 10).

VII. CONCLUSIONS AND FUTURE WORK

While reward learning from demonstration is a promising
method of inferring a rich and transferable representation
of the demonstrator’s intents, current algorithms suffer from
intractability and inefficiency in large domains due to the as-
sumption that the demonstrator is maximizing a single reward
function. To address this, a Bayesian nonparametric reward
learning framework is developed that infers multiple reward
functions from a single, unsegmented demonstration. The al-
gorithm is shown to have both performance and computational
advantages over existing methods. The framework is further
extended to general continuous demonstration domains using
Gaussian process reward representations, avoiding the need for
discretization of the state space. Experimental results are given
which demonstrate the ability of the new methods to learn
challenging maneuvers from demonstration on a quadrotor
helicopter and a remote-controlled car.

There are several extensions to the contributions presented
in the paper which could serve as areas of future work.
Since the computational complexity of the sampling procedure
scales with the amount of demonstration data to be analyzed,
another method for improving algorithmic efficiency could
use the Gaussian process framework to represent trajectories
instead of tabular storage of each observed state-action pair.
This would require learning a Gaussian process which maps
demonstration states to the observed actions taken. While
such a representation would obviously be an approximation
of the true observations, many GP sparsification methods
exist [64, 65] which could greatly reduce the memory and
computational requirements of the reward learning framework
in cases where there is a large amount of demonstration data.
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